Fourth Year First Semester

Cou	rse code	EE/PC/B/T/411		
Cate	gory	Program Core		
Cou	rse title	Power System Protection & Switchgear		
Sche	me and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-	requisites (if any)			
	PC/B/T/411: Power System		L	Т
	ysis of asymmetrical faults i		6	2
		breakers. Auto- reclosing feature - three pole &		
•	1 0	nation of electric arc. Arc build-up and quenching	5	1
		RRRV, Arc re-striking phenomena. Problems of	U	-
-	citive and low inductive curr	-		
	-	fect of transient current on it. Different types of arc	2	1
quen	ching media and special dev	ices for arc quenching.	2	1
Diffe	erent types of circuit breaker	s - their relative merits and demerits. Specific field	3	0
of us	age. Testing of circuit break	ers. D.C circuit breaking.	5	
Fund	amental principles of prote	ective relays, their properties and block diagrams,		
Sing	le input relays, overcurrent, o	earth fault and over voltage relays. Principle and	5	1
appli	cation of directional overcur	rent and earth fault relays		
Dista	nce relays their settings, erro	ors and remedies to errors.	4	1
Diffe	erential relays current a	nd voltage comparison, Generator Protection,	5	1
Tran	sformer Protection, Motor Pr	rotection	3	1
Diffe	erent types of pilot protecti	on wire, carrier and wireless pilot. Carrier aided	3	0
dista	nce protection. Carrier phase	e comparison schemes.	3	0
Refe	rence Books:			
1		otective Relaying: C. R. Mason, John Wiley		
2	Protective Relays – Their	Theory and Practice Vol. I & II: A. R. Van, C. Warrin	igton, J	Iohn
	Willey			
3		S. P. Patra, S. K. Basu & S. Choudhuri, Oxford & IB		
4		& Switchgear: B. Ravindranath & M. Chander, Willey	/ Easte	rn
5	e e	S. S. Rao, Khanna Publishers		
6	Power System Protection,	Vols. I, II & III: Electricity Council, Macdonald & Co	Э.	
0	The J & P Switchgear Boo	k: Johnson & Philips Ltd., Newness Butterworths.		
7			tion	

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Outcom	les:														
The stuc	lents of t	the co	urse s	hould	be ab	le to										
CO1	Classify	and a	analyz	e asy	mmet	rical	fault	s. (K	(4).							
CO2	Explain	the c	onstru	iction	, prino	ciple	of o	perat	ion, n	nerits	s and o	lemer	its and	d appli	ication	of
	differen	t type	s of ci	rcuit	break	ers. (K2)									
CO3	Explain	the f	undan	nental	opera	ating	prin	ciple	s and	appl	icatio	n of d	ifferei	nt type	s of	
	protectiv	ve rela	ays. (H	(2)												
CO4	Describ	e the	protec	ction s	chem	es fo	r dif	feren	t pow	er sy	stem	comp	onents	s like g	generat	ors,
	transfor	mers,	transr	nissio	n line	s and	d ind	uctio	n mot	tors.	(K2)					
CO-PO	Mappir	ng (3 -	- Stro	ng, 2 -	– Mo	lerat	e and	11 –	Weak	x)						
Power		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
System	CO1	2	3		2											
Protectio	n CO2	3		2	1		2	1	1							
&	CO3	3	2	1			1	1	1							
Switchgea	r CO4	3	2	2	1		1	1	1							

Course code	EE/PC/B/T/412		
Category	Program Core		
Course title	Principles of Communication Engineering & Computer	Networ	ks
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-requisites (if any)			
-	es of Communication Engineering & Computer	L	Т
Networks		2	-
Communication Enginee	ering:		
	sform and Random Process, Power Spectral Density		
	n and Cross-Correlation Functions, Geometric	3	1
1 0	als, Analog and Digital Signal Transmission and	5	1
1	nd Noise, White Noise, Baseband and Carrier		
Communications.			
-	Amplitude Modulation (AM), Modulation Index,		
	ressed Carrier (DSB-SC) , Conventional Double		
Sideband (DSB) and Sing	gle Sideband (SSB) Modulation, Demodulation of AM		
Signals, Amplitude Mode	ulators (Power-law Modulators, Switching Modulator,		
Ring Modulator) and	Demodulators (Synchronous Demodulator, Rectifier	7	2
Detector, Envelop Detector	tor), Frequency Division Multiplexing (FDM), Angle	/	2
Modulation: Frequency a	nd Phase Modulations (FM & PM), Narrowband and		
Wideband FM, Frequenc	y Modulators and Demodulators, Direct and Indirect		
FM, Balanced Discrimina	ator, FMFB and PLL FM Demodulators, AM and FM		
Radio Broadcasting, Supe	rheterodyne AM and FM Receivers.		
Digital Communication:	Digital Communication Systems, Communication		
Channels (AWGN, Bandl	imited, Multipath and Fading Channels), Introduction to		
Baseband and Bandpass	Digital Modulations, Concepts of Power Efficiency,		
Bandwidth Efficiency, Ir	nter-Symbol Interference (ISI), Bit-Error Rate (BER),		
Formatting And Baseband	d Modulation, Messages, Characters, and Symbols, M-		
ary Communication, PAM	I, PDM, PPM, Pulse Code Modulation (PCM), Uniform		
and Non-Uniform Quan	tizations, Companding, Time-Division Multiplexing	6	2
(TDM), Baseband Demod	lulation, Digital Bandpass Modulation & Demodulation	0	
(Detection), Coherent D	Detection, Non-Coherent Detection, Frequency Shift		
Keying (FSK), Binary F	SK Signals (BFSK), Amplitude Shift Keying (ASK),		
Phase Shift Keying (PSI	K), BFSK Modulators and Demodulators, Amplitude		
Shift Keying (ASK),Bi	nary ASK Signals, Binary ASK Modulators and		
Demodulators, Phase Shi	ft Keying (PSK), Binary PSK(BPSK) Signals, Binary		
PSK Modulators and Dem			

Spread-Spectrum (SS) Modulation: Direct-Sequence (DS) and Frequency-Hop (FH) SS, Concept of Pseudo-Noise (PN) Sequences, Generation of PN Sequences, SS Modulation for Baseband Transmission, DS SS with Coherent	2	1
BPSK (DS/BPSK), DS/BPSK Transmitter and Receiver, Processing Gain, Slow		
Frequency Hopping and Fast Frequency Hopping.		
Wireless Communications: Generations of Cellular Networks, Multiple-Access		
Techniques, FDMA, TDMA, CDMA. The Cellular Concept. Frequency Reuse.	2	0
Mobility Management. Concepts of Channel Assignment, Handoff Management.		
Computer Networks		
Introduction to Computer Networks: Analog vs. Digital Transmission, Nyquist		
and Shannon Limits, ISO/OSI Layered Architecture, OSI Reference Model.	4	2
Basics of Digital Data Transmission and Media: UTP,STP, Coax, Fiber, Modems,		
RS-232C.		
Error Detection and CRC Polynomial Codes, Encoding Schemes (NZ, NRZ,	4	1
Manchester Encoding).	4	1
Local Area Networks (LAN), IEEE 802.3, 802.5 Standards, Token Ring, Token		
Bus, CSMA/CD, Ethernet, Hub, Switches and Bridges. Wireless LAN: IEEE	5	1
802.11x standard. Circuit Switching and Packet Switching, Digital Switching	5	1
Concepts, ISDN, Virtual Circuits, X.25.		
Network and Transport Layer, Routing and Traffic Control, Flow and Congestion		
Control, Internetworking, Routers and Gateways, Internet IP, Transport	7	2
Protocols, TCP/IP, ATM. Network Security.		

Reference Books:

- 1 Communication Systems Engineering: John G. Proakis and Masoud Salehi, 2nd Edition, Pearson Education, 2008.
- 2 Digital Modulation Techniques: Fuqin Xiong, Artech House, Boston, London, 2000.
- 3 Wireless Communications: Principles and Practice: Theodore S. Rappaport, 2nd Edition, Prentice Hall of India Edition, 2008.
- 4 Computer Networks: Tanenbaum, PHI.
- 5 Random Variables and Stochastic Processes: A. Papulis and S. Unnikrishna Pillai, Probability, 4th Edition, Tata McGraw-Hill, 2002
- 6 Communication Systems: Simon Haykin, 4th Edition, Wiley India Edition, 2008.
- 7 Digital Communication: Fundamentals and Applications: Bernard Sklar, 2nd Edition, Pearson Education, 2007.

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Outco	mes:															
The stu	dents of	f the co	ourse	should	l be a	ble to	0										
CO1	Recall	Fouri	er Tra	nsfor	m, not	tions	of R	lando	om pr	roces	s and	l Nois	se; De	scrib	e Ana	log ar	nd
	Digita	l transı	missio	n; Sta	ate Ny	quis	t and	l Sha	nnon	Lim	its. (K1, K	(2)				
CO2	Descri	i be dif	ferent	Amp	litude	and	Freq	uenc	y mo	odula	tion	and d	emod	ulatio	n sche	emes,	
	ISO/O	SI Lay	vered A	Archit	tectur	e, Pr	otoco	ol Ar	chite	cture	Mo	dels. (K1, K	K2, K3	3)		
CO3	Interp	ret dif	feren	t digit	al mo	dula	tion	and c	lemo	dulat	ion s	chem	es, Di	igital	Data		
	Transr	nissior	n and 1	Media	ı, Erro	or De	etecti	on a	nd CI	RC P	olyn	omial	Code	es and	diffe	rent	
	Encod	ing Sc	hemes	s.(K2,	K3)												
CO4	Descri	i be and	l Ana	lyse S	pread	l-Spe	ectru	m tec	hniq	ues a	und b	asic p	rincip	oles of	f Wire	eless	
	Comm	unicat	ion, L	local a	and W	vide 4	Area	Netv	vorks	s witl	h diff	ferent	archi	tectur	es and	d	
	standa	rds. (K	2, K3	, K4)													
CO5	Explai	in Rou	ting, 1	Flow	and C	onge	estior	n Cor	ntrol,	Inte	rnetv	vorkir	ng, Int	ernet	and T	Transp	ort
	Protoc	ols, A'	ГM ar	nd issu	ies re	lated	to N	Jetwo	ork S	ecuri	ity. (K2, k	K3, K4	1)			
CO-PC) Mapp	ing (3	– Stro	ong, 2						· ·							
Princip	oles of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Commu		CO1	3	2	1												3
Engine	0	CO2	2	3	1	1											3
& Comp	-	CO3	2	3	2	-		-	1	-				-			3
Netwo		CO4 CO5	2 2	3	2	1 2		1	1	1				1			3
		003	4	5	4	4		L	T	I				1			3

Elective Paper-I

Course code	EE/PE/B/T/413
Category	Program Elective
Course title	Elective Paper-I
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;

Course code	EE/PE/B/T/413A		
Category	Program Elective		
Course title	Digital Control Techniques		
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-requisites (if any)			
EE/PE/B/T/413A: Digital C	ontrol Techniques	L	Т
Introduction: Introduction,	Advantages and disadvantages of digital control,		
	igital control scheme, Examples of practical digital	1	0
control systems.			
Review of Signal Convers	ion and Processing: Comparative study of basic		
•	analog signal, Continuous-time quantized signal,		
	gital signal, Sampling, quantization and coding of		
	Hold devices and their characteristics: Sampling		
	Acquisition time, Aperture time, Settling time, and		
	the minimum and maximum sampling frequency,	3	2
	d Zero Order Hold (ZOH), Transfer function of ZOH,		
	te-time vs. Digital Control Systems, Block diagram		
	signals associated at different subsystems of a digital		
control system.	signals associated at unrefent subsystems of a digital		
	Control Systems: Time-domain model-State variable		
	model, Impulse response model; Transfer Function		
·	on, Transfer Function of unit delayer, Derivation of	3	2
	inction of Open Loop and Closed Loop system by	5	2
Block Diagram reduction tech			
	d Design of Discrete-time Control System: Time		
	ete time control systems (open loop and closed loop)		
-	Pulse Transfer Function model, Mapping between s-		
1 0	alysis of closed-loop systems in the z-plane, Method	5	2
	The Jury stability test, Transient and Steady State	5	2
	tems -Transient response specifications, Static error		
-	rol system design by Root-Locus method.		
1 V	of Analysis and Design of Discrete-time Systems:		
	e diagram of discrete-time system- Gain margin and	2	2
• •	ompensators using Bode diagram for discrete-time		
system, Design on the W-plan			
	screte Time Control System: Discrete-time state		
	nd Diagonal forms of state-space equations, Solving	4	1
	nations, Similarity transformation, Discretization of		
continuous-time state-space e	quations.		

Digital PID Controller Design: Conventional design, Model based design.	1	1
Controllability and Observability of Discrete Time Systems: Definition of		
controllability for discrete-time system, Test for controllability for discrete-time	2	1
system, Definition of observability for discrete-time system, Test for observability	2	1
for discrete-time system.		
Pole Placement and Observer Design for Discrete Time Systems: Design of a		
discrete-time state regulator by pole placement, Design of a discrete-time state		
feedback control system with reference input by pole placement, Design of full	3	1
order and reduced order state observers, Compensator design by separation		
principle.		
Advanced Digital Control Systems: Basic Principles of Intelligent Control:		
Fuzzy Logic Control, Artificial Neural Network based Control, Neuro-Fuzzy	3	1
Control, Basic Principles of Embedded Digital Control System Design.		
	•	
Reference Books:		
1 Discrete-Time Control Systems: Katsuhiko Ogata, 2 nd edition, Prentice Hall.		
2 Digital Control Systems: Benjamin C. Kuo, Holt-Saunders International Edition	n.	
3 Digital Control and State Variable Methods: M. Gopal, 2 nd edition, Tata McGra	aw Hill.	
Content Delivery Method		
• Class room lecture (chalk and board) (D1)		
• Visual presentation (D2)		
• Tutorial (D3)		
• Discussion (D7)		
Course Outcomes:		
The students of the course should be able to		
CO1 Describe different signal conversion techniques and Obtain discrete-time	plant m	odels
of different topologies (K1).		
CO2 Describe time-domain and frequency-domain behaviors of discrete-time system	ystems a	and
Comprehend the notion of stability in time-domain and frequency-domain	n. (K2)	
CO3 Describe principles of Intelligent Control. (K2)		
CO4 Analyse the discrete-time systems in state-space and Examine controllabil	lity and	
observability of discrete-time system (K3).		
CO5 Synthesize Digital PID Controllers and compensators. (K4)		
CO6 Design state-feedback controllers, for regulatory and tracking kind of prob	lems. (I	(5)
CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)		
Digital PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS	O1 PSO	2 PSO3
Control CO1 3 2 1 1 1	3	

Techniques	CO2	2	3	2		1				1	3	
	CO3	2	3	1						1	3	
	CO4	2	2	3	1	2				2	3	
	CO5	2	2	2	3	2				2	3	
	CO6	2	2	2	2	3				2	3	

Cour	se code	EE/PE/B/T/413B		
Categ	gory	Program Elective		
Cour	se title	High Voltage Technique – I		
Scher	me and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-r	requisites (if any)			
EE/P	E/B/T/413B: High Volta	ge Technique – I	L	Т
Gene	ration of charge parti	cles in gaseous dielectrics. Electric breakdown		
mech	anism. Paschen's law. Str	eamer mechanism of spark breakdown. Breakdown in	4	1
non-u	iniform field.			
Break	down in gases: Corona	. Polarity effect. Voltage time lag. Electronegative	3	1
gases	. Effect of placing barriers	S.	5	1
		Intrinsic breakdown, Electromechanical breakdown.	2	1
Break	down in solid dielectrics	: Streamer breakdown, Thermal breakdown, Erosion	2	1
break	down, Partial discharges.		2	1
Break	down in liquid dielectrics	s. Electronic breakdown, cavitations breakdown.	2	1
Break	down in liquid dielectrics	s: Breakdown due to suspension particle mechanism.	1	1
Analy	tical method of electric t	field analysis. Conducting and dielectric cylinder and	3	1
spher	e in uniform field.		3	1
Elect	ric field analysis by Finite	e Difference Method. Formulations for homogeneous		
and r	nulti-dielectric media. Fo	ormulations in 2D, 3D and axis-symmetric systems.	3	2
Conce	ept of equal and unequal i	nodal distances in problem formulation.		
Elect	ric field analysis by Fini	te Element Method. Formulations for homogeneous	3	1
and n	nulti-dielectric media.		5	1
	• •	Charge Simulation Method. Basic formulations for	3	1
homo	geneous and multi-dielect	tric media. Types of charges and accuracy criteria.	5	1
Electi	ric stresses and their cons	equences in high voltage system. Techniques of stress	2	1
contro	ol.		-	1
Dofor	ence Books:			
1	High Voltage Engineerii	ag: Edited by Alston		
2	0 0 0	ng Fundamentals: Kuffel & Zaengl.		
2	0 0 0	ng: Razevig & Chourasia.		
4	Electric Field Analysis:			
- -	Electric Field Analysis.	Sivuji Chakiavorti.		
Cont	ent Delivery Method			
•		e (chalk and board) (D1)		
•	Visual presentatio			
	Tutorial (D3)			

- Tutorial (D3)
- Discussion (D7)

Course	Outco	omes:															
The stud	lents c	of the co	ourse	shou	ıld b	e abl	e to										
CO1	Desc	ribe di	ffere	nt ty	pes o	of bre	akdo	wn 1	nech	anisı	m in	gases,	, liqui	ds and	solids	(K2).	
CO2	App	ly the c	once	pt of	elec	tric f	ield	analy	vsis t	oy (i)	FDN	Л, (ii)	FEM	and (i	ii) CSN	M (K3)	
CO3	Ana	lyse the	elec	tric f	ïeld	of Cy	ylind	er ar	ld Sp	here	in u	niforn	n field	(K4).			
CO4	Dete	rmine	the j	possi	biliti	es of	f (i)	elect	ric s	stress	and	their	contr	ol (ii)	Partia	l disch	arge
	phen	omena	(K4)														
CO-PO	Map	ping (3	- Sti	rong,	2 – 2	Mod	erate	and	1 – 1	Weak	x)						
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ligh Vol	togo	CO1	3		2			1	1					1		3	
High Vol Techniqu	0	CO2	2	3	2	1	1						1			3	
reeninqu	it – 1	CO3	2	1	1		1									3	
		CO4	2	3	2		1		2							3	

	code EF	E/PE/B/T/413C		
Catego	y Pro	ogram Elective		
Course	title Sp	ecial Electrical Machines & Drives		
Scheme	and Credits L-'	T-P: 2-1-0; Credits: 3.0;		
Pre-req	uisites (if any)			
EE/PE/	B/T/413C: Special Electrical Machines &	z Drives	L	Т
Relucta	nce motor, Switched Reluctance motor, I	Brush-less DC motor, Hysteresis	0	4
motor, S	ervo-motor, Stepper Motor. Electronic exc	itation schemes for these.	8	4
	ent magnet dc machines. PM synchrono n motors.	us motor and generator, Linear	4	2
	efficient motors.		1	0
	n regulators: Basic principles.		1	0
	f the different characteristics for doubly-fe	ed slip-ring induction machine as	•	, v
generato	or. Development equivalent circuit, power nethodology as generator.	1 0	4	2
Method	of grid synchronization.		2	0
	tion to Microcontroller, DSP and PLC nous motor drives.	applications for Induction and	3	2
-	tion to Artificial Intelligence and application	on to motor drives.	2	0
Feedbac	k system components for drive application	on like tacho-generators, optical	2	1
	s, hall-effect sensors.		2	1
	and current sensing with dc and variable fr	equency supply	1	1
encoder	and current sensing with dc and variable in	equency suppry.		
encoder Voltage		equency suppry.		
encoder Voltage	ce Books:			
encoder Voltage	ce Books: Power Electronics and Motor Control: W		V. Liang	ĵ,
encoder Voltage Referen 1	ce Books: Power Electronics and Motor Control: W Cambridge University Press.	7. Shepherd, L. N. Hulley & D. T. W		5,
encoder Voltage Referen 1 2	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive	7. Shepherd, L. N. Hulley & D. T. W		<u>,</u>
encoder Voltage Referen 1 2 3	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan	7. Shepherd, L. N. Hulley & D. T. Wes: B. K. Bose, Pearson Education A	Asia.	
encoder Voltage Referen 1 2 3 4	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan Principles of Electric Machines and Pow	7. Shepherd, L. N. Hulley & D. T. W es: B. K. Bose, Pearson Education A ver Electronics: P. C. Sen, John Wile	Asia.	
encoder Voltage Referen 1 2 3	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan	7. Shepherd, L. N. Hulley & D. T. W es: B. K. Bose, Pearson Education A ver Electronics: P. C. Sen, John Wile	Asia.	
encoder Voltage Referen 1 2 3 4	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan Principles of Electric Machines and Pow	7. Shepherd, L. N. Hulley & D. T. W es: B. K. Bose, Pearson Education A ver Electronics: P. C. Sen, John Wile	Asia.	
encoder Voltage Referen 1 2 3 4 5	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan Principles of Electric Machines and Pow Electric machinery: Fitzgerald & Kingsle	7. Shepherd, L. N. Hulley & D. T. W es: B. K. Bose, Pearson Education A ver Electronics: P. C. Sen, John Wile ey Motors: C. G. Veinott	Asia.	
encoder Voltage Referen 1 2 3 4 5 6	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan Principles of Electric Machines and Pow Electric machinery: Fitzgerald & Kingsle Fractional & Sub-fractional Horsepower	7. Shepherd, L. N. Hulley & D. T. W es: B. K. Bose, Pearson Education A ver Electronics: P. C. Sen, John Wile ey Motors: C. G. Veinott S. Chakravorti	Asia.	
encoder Voltage Referen 1 2 3 4 5 6 7	ce Books: Power Electronics and Motor Control: W Cambridge University Press. Modern Power Electronics and AC Drive Electric Motor Drives: R. Krisnan Principles of Electric Machines and Pow Electric machinery: Fitzgerald & Kingsle Fractional & Sub-fractional Horsepower Electrical machines: P. K. Mukherjee &	 V. Shepherd, L. N. Hulley & D. T. Wes: B. K. Bose, Pearson Education After Electronics: P. C. Sen, John Wileey Motors: C. G. Veinott S. Chakravorti Gieras 	asia. ey & So	ns

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Outcon	nes:														
The stud	ents of	the co	ourse	should	l be a	ble to										
CO1	Desc	ribe	the co	onstru	ctions	of s	pecial	elect	rical	mach	ines a	and of	ther re	egulati	ng de	vices
	(K1)															
CO2	Desc	ribe	the ch	naract	eristic	s and	basi	c prin	ciples	s of c	perati	ion of	f speci	al ma	chines	and
	Expl	ain th	ne con	ntrol 1	mecha	nism	s of c	omm	only	used	power	elect	ronic	contro	ollers u	used.
	(K2)															
CO3	Discu	uss th	e mo	dalitie	es of	Micro	contr	oller,	DSP,	PLC	appli	ication	ns to r	notor	drives	and
	comp	comprehend the performance of energy efficient motors (K3).														
CO4	Anal	Analyse the importance of using artificial intelligence to different electric drive systems														
	(K3)	(K3).														
CO5	Deve	Develop the drive model for the special machines using different voltage and current														
	sensi	ng teo	chniqu	ies (K	3).											
CO6	Expl	ain T	'he stu	udents	s shou	ıld be	able	to Ex	xplair	use	of dif	ferent	t feedt	oack c	compoi	nents
	and t	heir ii	nplica	ations	in ele	ctric	drive	syster	ns (K	5).						
	•															
CO-PO	Mappi	ng (3	– Stro	ong, 2	– Mc	derat	e and	1 - W	/eak)							
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Special	CO1	3	2	1				1					1		3	
Electrical		1	3	1				1					1		3	
Machines &	CO3	1	2	3	1 3			1					1		3	
& Drives	CO4 CO5	1	$\frac{2}{3}$	1 2	3			1					1		3	
211703	CO5	1	3	2	1			1					1		3	
	000	l –		I –	-		I	-		I					Ť	

Cours	se code	EE/PE/B/T/413D					
Categ	jory	Program Elective					
Cours	se title	Advanced Instrumentation-I					
Schen	ne and Credits	L-T-P: 2-1-0; Credits: 3.0;					
Pre-re	equisites (if any)						
		• · · · •					
	E/B/T/413D: Advanced		L	T			
		voltmeter. lock-in amplifier.	3	1			
Smart sensor systems. Sensor fusion, various levels, applications, feature5extraction methods and classification of features related to fusion strategy.5							
Data A	2	1					
Time- transfo	4	2					
Transo gate d	3	1					
Force	2	0					
Statist	ical analysis of quantiza	tion-noise in ADCs Special ADCs: Oversampling					
type v	vithout noise shaping, S	igma-Delta Modulator type, Full flash and Half-	6	1			
flash A	Architectures						
Correl	lation methods of measur	rement	1	0			
-	Processing technique gers, median filters.	s in Instrumentation. Linear and Exponential	2	1			
Syster	-	es: deconvolution, Regression models: AR, MA ice filters.	2	1			
Refer	ence Books:						
1	Electronic Measuremen	ts & Instrumentation: B. M. Oliver & J. M. Cage					
2	Probability, Random Va	riables and Random Signal Principles: P. Z. Peebles					
3		g and Applications: Dag Stranneby and William Wa	lker				
4	The Data conversion Ha	undbook: Walt Kester					
5	Electrical Measurement	s: Fundamentals, Concepts, Applications: Martin U.	Reisslan	d			

- 6 High Voltage Measurement Techniques: A. J. Schwab
- 7 Control Sensors and Actuators: Clarence W. de Silva
- 8 Digital Measurement Techniques: T. S. Rathore
- 9 Digital Signal Processing: Principles, Algorithms & Applications: J. G. Proakis and M. G. Manolakis
- 10 Mathematical Techniques in Multisensor Data Fusion: David L. Hall
- 11 Statistical Digital Signal Processing and Modeling: Monson H. Hayes
- 12 Transducers and Instrumentation: D. V. S. Murty
- 13 Wavelet Transform–Introduction to Theory & Applications: R. M. Rao & A. S. Bopardikar

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

The students of the course should be able to									
CO1 Describe the operating principles of advanced instruments and transducers. (K1)									
CO2	Explain various signal processing tools suitable for electrical instrumentation. (K2)								
CO3	Use various components and methodologies involved in signal acquisition, processing and analysis related to electrical instrumentation. (K3)								
	analysis related to electrical instrumentation. (KS)								

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Advanced	CO1	3	1												3	
Instrumentation-I	CO2	3	2	1											3	
	CO3	2	3	1	2	2									3	

Course code	EE/PE/B/T/413E	
Category	Program Elective	
Course title	Advanced Power Systems Analysis	
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;	
Pre-requisites (if any)		

EE/PE/B/T/413E: Advanced Power Systems Analysis	L	Т
Load flow analysis: Formulation of the load flow problem. Solution of load flow		
problem by Newton Raphson methods. Incorporating tap changing transformers	5	2
and phase shifters in load flow problem.		
Economic operation: Characteristics of generating units, generation scheduling		
neglecting transmission loss, scheduling problems considering transmission loss	6	1
and its solution by B-coefficient method, derivation of B-coefficients, introduction	6	1
to hydro-thermal scheduling problem.		
Unit commitment problem: Definition of the problem, different costs and		
constraints to be considered, solution of the problem using priority order approach	3	1
and dynamic programming,		
Multi-area Load Frequency Control: Modeling of Tie line, area control error, block-	1	1
diagram representation of two-area load frequency problem.	1	1
Short circuit study: Formulation of bus impedance matrix, digital computer solution	_	1
of symmetrical and unsymmetrical faults.	5	1
Transient stability: Multi machine transient stability, its mathematical formulation		
and solution, representation of excitation system and its inclusion in stability	5	1
studies, methods of improving transient stability.		
Introduction to dynamic stability: Small perturbation model of single machine		
connected to infinite bus, analysis of voltage regulator action, cause of negative	3	1
damping, preliminary concept of dynamic stability and power system stabilizer.		
Voltage stability problem – causes of voltage instability, Analysis of static voltage	•	
stability, Sub synchronous resonance in Power System.	2	1

Ref	Reference Books:									
1	Computer Methods in Power System Analysis: Stagg & El-Abiad, Tata McGraw Hill									
2	Computer Aided Power System Operation & Analysis: R. N. Dhar, Tata McGraw Hill									
3	Electric Energy Systems Theory: O. I. Elgard, Tata McGraw Hill									
4	Power Generation Operation And Control: A. J. Wood & B. F. Wollenberg, John Willey									
5	Power System Engineering: I. J. Nagrath & D. P. Kothari, Tata McGraw Hill									
6	Power System Analysis: A. R. Bergen & V. Vittal, Pearson education									
7	Computer Aided Power System Analysis: G. L. Kusic, Prentice Hall India									
8	Power System Stability and Control: P. Kundur, McGraw Hill									

9 Power System Stability Operation and Control: A. Chakrabarti and Sunita Halder, PHI Learning System.

Content Delivery Method

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

The sta																	
CO1	Descr	ib	e, For	mula	te an	d Solv	ve pov	ver sy	stems	load	flow	prob	lems ((K1, K	K5, K3	3).	
CO2	Form	ul	ate, S	olve a	nd A	nalyz	e vari	ous ty	pes o	of sho	rt circ	cuit fa	ults in	n pow	er net	work	(K5,
	K3, K	4)	•														
CO3	Descr	ib	e, Fo	rmul	ate a	ind S	olve	probl	ems	relate	d to	econ	omic	oper	ation	of p	ower
	syster	ns	(K1,]	K5, K	3).												
CO4	Describe, Formulate and Solve power system transient stability problem (K1, K5, K3).																
CO5	Classify and Describe different types of stability problems in power systems and to																
	identify the causes for occurrence of those problems (K2, K1).																
CO-PC) Mapp	oin	ig (3 –	- Stroi	ng, 2	– Mo	derate	and 1	1 - W	eak)							
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Advance	ed CO	1	3		2			1	1	1				1		3	
Power	CO	2	2	3	2	1				2			1			3	
System			2	1	1				1							3	
Analysi			2	3	2			1	2							3	
	CO	5	2	3												3	

Course code	EE/PE/B/T/413F
Category	Program Elective
Course title	Illumination Science and Lighting Design
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;
Pre-requisites (if any)	

EE/PE/B/T/413F: Illumination Science and Lighting Design	L	Т
Visual performance evaluation; external factors of vision-visual acuity, contrast	2	0
sensitivity, time, luminance, color; visual perception; assessment of visibility level;	2	U
Biological factors of lighting-circadian system; blue light hazards;	1	0
Color science- additive and subtractive theory, color vision model, Colorimetry-	2	0
visual basis of colorimetry, source color & object colour.	2	U
CIE chromaticity -XYZ and UCS color space, source and object color	2	1
specification, dominant wavelength, purity; Munsellcolour system;	2	1
Grassmann's law of color mixing, CIE standard source and illuminant.	2	1
colorimetric instrument -light source colorimetry and colorimetry of materials;	L	1
Correlated color temperature, color rendering index-its measurement; metamerism.	2	0
Photometry-types of detectors-characteristics, figures of merit etc.; Photometric		
measurements-C-Gama and B-Beta photometry; understanding of luminaire	2	0
photometric test; sources of errors and correction;		
Luminaire -design considerations, optical control schemes, design procedure of		
reflecting and refracting type of luminaire, testing of luminaire, Ingress Protection	2	0
(IP) code, Luminaire standard -BIS recommendation.		
LASER -characteristics, features and applications. Optical fiber -its construction	2	0
as light guide, features and application.	2	0
Coloured LED & white LED -features and characteristics, features and	1	0
applications;	1	0
Lamp materials-filament, glass, ceramics, gases, phosphors and other metals &	3	0
nonmetals; theory of gas discharge phenomena; lamp design considerations;	5	U
characteristics of low & high pressure mercury-vapour& sodium-vapour lamps;	2	0
modern energy saving lamps -comparative study;	2	0
Illuminance calculation-illuminance as vector quantity, direct illuminance from	3	2
point, linear, area sources;	5	2
advanced methods of illuminance calculation, luminance, luminous exitance, non-	2	2
planer illuminance -spherical, cylindrical etc., interreflected illuminance;	2	2
Ballasts &ignitors for different discharge lamps; design consideration of	2	1
electromagnetic and electronic ballast for TL lamps; ballast materials.	<i>L</i>	1
Lighting controls-different control equipment-on/off switch, simple automatic	2	0
switches, photocell, occupancy sensor, timer, lighting contactors, dimmer, low	2	0

voltage relays; communication links-line and low voltage hardware; different control strategies **Reference Books:** Lamps and Lighting: Edited by J. R. Coaton and A. M. Marsden, 4th Edition. 1 2 Lighting for energy efficient luminous environments: Ronald N. Helms & M Clay Belcher. 3 Illumination Engineering: From Edison lamp to the LASER: J. B. Murdoch 4 Electric Discharge Lamps: John F. Waymouth 5 Human Factors in Lighting: P. R. Boyce 6 Lighting Control Handbook: Craig Dilovie **Content Delivery Method** Class room lecture (chalk and board) (D1) • Visual presentation (D2) Tutorial (D3) Discussion (D7) **Course Outcomes:** The students of the course should be able to Define the visual performance parameters, non-planer illuminance metrics, colorimetric CO1 parameters and describe the biological factors of lighting. (K1) CO₂ Discuss and illustrate advanced illuminance computation procedures due to linear, area sources and computation procedures of CIE chromaticity for both the source colour and object colour. (K2) **Recognise** the working principles of different electric lamps including ballast and other CO3 control gears and relate their operational characteristics with the materials, the lamp systems made of. (K1) CO4 **Develop** the concept of Type-C (C-gamma) and Type-B (B-beta) photometric system and interpret photometric test reports of luminaire to predict its light distribution pattern as well as its applicability. (K3) Compare different light control equipment, schemes and distinguish their operational CO5 characteristics to identify scope of applications. (K4)

CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)																
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Illumination Science and Lighting Design	CO1	3	2		1										3	
	CO2	2	3			1									3	
	CO3	2	1	3	1										3	
	CO4	1	2	3		1									3	
	CO5	1		2		3									3	

Course code	EE/PE/H/T/414
Category	Program Elective
Course title	Honours Paper III (Basket-3)
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;

Course code	EE/PE/H/T/414A							
Category	Program Elective							
Course title	Introduction to Nano-Biotechnology							
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;							
Pre-requisites (if any)								
EE/PE/H/T/414A: Introductio	n to Nano-Biotechnology	L	Т					
The fundamental science beh	ind nanotechnology. Electron, atoms and ions,							
molecules. Metals. Bio-systems. Molecular recognition. Electrical conduction and								
laws. Quantum mechanics and i	deas. Optics.							
Tools for measuring nanostruc	tures. Scanning probe instruments. Spectroscopy.	4	2					
Electrochemistry. Electron micr	oscopy.	4	2					
Tools to make nanostructure	es. Nanolithography. Molecular synthesis. Self	2	1					
assembly. Nanoscale crystal gro	wth. Polymerization. Building blocks.	2	1					
Smart materials. Self-healing	structures. Recognition. Separation. Catalysis.							
Heterogeneous nanostructures	and composites. Encapsulation. Consumer	3	2					
materials.								
Sensors. Natural and man-made nanoscale sensors. Electromagnetic sensor.								
Biosensors. Electronic noses.	2	1						
Optics and electronics. Optical control and manipulation. Electronics. Carbon								
nanotubes. Soft molecule electronics.								
Introduction to nanoscience and	I nanotechnology, the "nano-bio" interface, nano-	3	1					
biotechnology, current status an	d future trends.	5	1					
Reviewing major fields in nano-	biotechnology, bio-molecular motors and devices.	2	0					
Self-assembled structures- a key	v to nano-bio technology, biological research at the							
nanoscale, biomimetics, bioter	nplating, and newly-designed structures, DNA-	3	1					
based nanotechnology and nano	electronics.							
Applications of nano-bio tech	nology in different fields of electronics, opto-	3	1					
electronics and related modern t	echniques.	5	1					
History of nano-biotechnology	, nanoscale and nanostructures, classification of	3	1					
nano materials, manufacturing a	pproaches.	5	1					
Nano-biotechnology and its c	linical applications- drug delivery, treatment of							
neurodegenerative disorders, o	perative dentistry, ophthalmology, surgery, tissue	3	1					
engineering, antibiotics, nano pl	narmaceuticals, modified medicated textiles.							
Biomedical applications of	f nanotechnology- introduction, biomedical	3	1					
nanotechnology, diagnostics, nanodrugs, prostheses and implants, potential risks.								
	· · · ·							
Reference Books:								
1 Nanotechnology: A Gent	e Introduction to the Next Big Idea: Mark Ratner, Da	niel Ra	tner.					

2003, Pearson Education, Inc.

2	Nano Technology : Basic Science To Emerging Technology: Shalini Suri, 2006, Aph
	Publishing Corporation
3	Nano BioTechnology: BioInspired Devices and Materials of The Future: Oded Shoseyov,
	Ilan Levy, 2007, Humana Press

- Class room lecture (chalk and board) (D1) •
- Visual presentation (D2) .
- Tutorial (D3) .
- Discussion (D7) •

Course Outcomes:

Biotechnology

The students of the course should be able to

CO4

CO5

3

3

1

2

1

1

2

1

1

CO1	Explain the various terms related to nanotechnology (K2)																
CO2	Apply the concept of nanotechnology for the formation of semiconductors. (K3)																
CO3	Point out the bottom-up and top-down approaches (K4)																
CO4	Relate the concept of nano-bio technology in modern engineering research (K4)																
CO5	Apply the techniques of nano-bio interface in electrical and electronic systems (K3)																
CO-PO N	Mapping	g (3 – 5	Stron	ıg, 2 -	– Mc	odera	ite an	nd 1 -	- We	ak)							
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Introduct	tion to	CO1	3											1			3
Nan		CO2	2	3	1	1	1							1			3
Riotechnology		CO3	3		2									1			3

1

1

1

3

3

Course code	EE/PE/H/T/414B						
Category	Program Elective						
Course title	Solid State Lighting Systems						
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;						
Pre-requisites (if any)							
EE/PE/H/T/414B: Solid State	e Lighting Systems	L	Т				
Materials-UV-VIS-IR LEDs; c	arrier recombination - radiative and non-radiative;	3	0				
Carrier lifetime, current dens	ity; semiconductor junction- p-n homo-junction.	3	0				
hetero-junction, double hetero-	junction;	3	0				
LED device structure, white	LED configuration and challenges, White LEDs-						
phosphor conversion, color mi	xing, color rendering; trade-off between efficiency	4	0				
and color rendering;							
LED efficiency, construction	n, light extraction; escape cone; primary and	3	1				
secondary optics;		3	1				
Current-voltage characteristics	; thermal resistance; junction temperature, effect	4	0				
of ambient temperature on elec	trical and photometric parameters.	4	0				
Basics of Organic LEDs- materials, electrical and optical properties;							
LED Modules and Thermal Management							
LED driving circuits-ac to dc; dc to dc conversion; over current protection; THD,							
driver efficiency, loss; LED module design.							
	module – related Indian Standards; Electrical and	4					
photometric test reports.		4	2				
Applications-Few Practical Ex	amples like LED Flashlight, Light bulbs etc., PV						
	tem; LED replacement for filament lamp and	4	2				
fluorescent lamps in lighting de							
Dynamic façade lighting;		3	0				
Visible Light Communication		4	0				
			1				
Reference Books:							
1 Light Emitting Diodes:	E. F. Schubert; 3 rd Edition, 2018						
	umination: M. Nisa Khan, CRC Press, 2014.						
e	Ming Liu; 2005; Cambridge University Press.						
	mitting Diode Technology and Applications: Gilbert	t Held;	2008.				
1 st Edition, Auerbach F		,					
	g Diodes: Luiz Pereira, Pan Stanford Publishing, 201	2					

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Course Outcomes:															
The stu	The students of the course should be able to															
CO1	Define	and de	scribe	e the	phys	ical	proce	esses	invo	olvec	l in tl	ne lig	ht gen	eratio	n in L	EDs.
	(K1)															
CO2	Discuss and illustrate LED device structure and phosphor conversion process for white												white			
	LEDs. (K2)															
CO3	Develop the concept of LED Modules and Thermal Management scheme and interpret															
	photometric test reports of LED module to predict its light distribution pattern as well as												ell as			
	its applicability. (K3)															
CO4	Recogn	ise the	worl	king	princ	iples	of l	LED	driv	ving	circui	ts an	d thus	prop	ose d	esign
	scheme	based of	on des	ired o	operat	tiona	l cha	racte	ristic	cs. (K5)					
CO5	Compa	re amo	ng LE	ED lig	ghting	g pro	ducts	s and	app	raise	their	opera	tional	chara	cteristi	cs to
	identify	scope	of app	licati	ions. ((K6)										
CO-PC) Mappi	ng (3 –	Stron	g, 2 -	- Moc	lerate	e and	1 –	Wea	k)						
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Solid	CO	-	2		1			2								
State	CO2		3													
Lightin	-		1	3	2											
System CO4 1 2 3 2																
	COS	5 1		2		3										

Course code	EE/PE/H/T/415
Category	Program Elective
Course title	Honours Paper IV (Basket-4)
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;

Course code	EE/PE/H/T/415A							
Category	Program Elective							
Course title	Principles of Software Engineering							
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;							
Pre-requisites (if any)								
			-					
EE/PE/H/T/415A: Principles	of Software Engineering	L	Т					
	efinition of Software, the evolving role of Software,							
Software characteristics, Softw	3	0						
myths, Software crisis, Summa	-							
Software Project Planning	& Estimation: Project Planning, Milestones &							
Deliverables, Project Schedu	aling, -Bar Charts & activity network, Risk							
	anagement, Independent Verification & Validation,	5	1					
Software Estimation Techniqu	nes-COCOMO Model, -The Software Equation, -							
Estimating Software Maintenar	nce Cost, Summary.							
Software Quality Assurance	(SQA): Introduction to QA and Planning, Software							
Quality Assurance & Standard	ds- Documentation Standards,. Process & Product							
Quality, Quality Planning,	Quality Control- Quality Reviews, Software							
Measurements & Metrics- The	Measurement Process, Product Metrics, Analysis of	5	3					
Measurements, Statistical Qua	lity Assurance, Software Testing - Software Safety							
& Hazard Analysis, The SQA Plan, The ISO 9000 Quality Standard- The ISO								
Approach to QA Systems, The	ISO 9001 Standard, Summary.							
8	: System Considerations, Real-Time Systems -							
Integration & Performance Issu	es, Interrupt Handling, Real-Time Databases, Real-	6	3					
Time Operating Systems-Execution	utives Real-Time Languages, Task Synchronization	0	5					
Communication, Case Study- I	Data Acquisition System, Summary.							
Requirements Engineering:	Ward & Mellor methodology, Requirement							
Analysis, Requirement Elici	tation, Requirement Validation, Generation of							
Software Requirement Specif	ications ,Formal Specification Techniques, State-	7	4					
Oriented Notations - State	Chart, Mode Chart, Petri-Nets, Object-Oriented							
Notations- Use Case, UML, A	Case Study, Summary.							
Software Design: Fundamen	tal Design Concepts -Abstraction - Information							
Hiding - Modularity - Concu	rrency, Modules & Modularization Criteria- Top-							
Down & Bottom-up Approac	h- Coupling & Cohesion, Structured Analysis &							
Design Techniques (SADT),	Data Model - Data Dictionary - ERD (Entity-	7	Λ					
Relationship Diagram), Enviro	onmental Model - Context Diagram - Event List,	/	4					
Functional Model- Data flow	diagram (DFD) - PSPEC (Process Specification),							
Behavioral Model- State T	ransition Diagram (STD) - CSPEC (Control							
Specification), Summary.								

Distri	buted System Architectures: Case Study: Introduction to Client/Server									
system	ns, The Structure of C/S systems- Software Components for C/S systems -									
Distri	bution of Software Components - Linking C/S Software components -									
Middl	eware & Object Request Broker Architectures, Software Engineering for C/S	3	1							
System	ms, Analysis, Modeling Issues, Designs for C/S Systems-Conventional									
design	n approaches, Database design, Process design iteration, Testing Issues-									
Overa	ll C/S Testing Strategy- Process Design Techniques, Summary.									
Refer	ence Books:									
1	Software Engineering- A Practitioner's Approach: R.S. Pressman, 4th Edition	n, McGl	RAW-							
	HILL International Editions, 1997.									
2	Software Engineering Concepts: Richard Fairley, Tata-McGRAW-HILL Edition, 1997.									
3	Software Engineering: I. Sommerville, 6 th Edition, Pearson Education, 2004									
4	A Practical Guide to Real-Time Systems Development: S. Goldsmith, PH, 19	93								
5	Real-Time Systems Design and Analysis: Philip A. Laplante, 3 rd Edition, Wil	ey-Indi	a,							
	2007.									
Conte	ent Delivery Method									
•	Class room lecture (chalk and board) (D1)									
•	Visual presentation (D2)									
•	Tutorial (D3)									
•	Discussion (D7)									
Cours	se Outcomes:									
The st	udents of the course should be able to									
CO1	Describe the software life cycle development processes and concepts of dist	ributed								

COI	Describe the software life cycle development processes and concepts
	architecture; Describe different aspects of SQA (K1).
CO2	Comprehend the concepts of task scheduling in RTOS. (K2).

CO3	Apply Structured analysis and design (SASD) techniques towards the development and
	implementation of software solutions. (K3)

CO4 **Provide** solutions for real life problems using SASD tools. (K4).

CO5 **Design** software solutions for industrial problems using object oriented tools and techniques. (K5)

CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)

ee ie iiimppi			·o, -	1.10					·····)							
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Principles of	CO1	3									1	1				3
Software	CO2	1	3	2							2	2				3
Engineering	CO3	1	2	3	2				1	2	2	2				3
Engineering	CO4	1	2	2	3		1		1	2	2	2	1			3
	CO5	1	2	2	2	3	1		1	2	2	2	1			3

Course code	EE/PE/H/T/415B						
Category	Program Elective						
Course title	Reliability Engineering						
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;						
Pre-requisites (if any)							
EE/PE/H/T/415B: Reliability	Engineering	L	Т				
Reliability Function; Repairable and Non-repairable Systems; Markov modeling;							
Two state models; Series, para	llel and composite systems ; MTTF, MTTR, MTBF.	1	0				
Generation system model: Generating unit unavailability; Capacity outage probability tables; Comparison of deterministic and probabilistic criteria; Recursive algorithm for capacity model building; Recursive algorithm for unit removal.							
Loss of load indices (LOLE computation); Loss of energy indices (LOEE and EIR computation).							
Frequency and duration method for generating capacity evaluation; State space diagram of frequency and duration method.							
Reliability of Substation- Active and passive failures; Stuck condition of breakers; Effect of failure modes; Simulation of failure modes; Evaluation of reliability indices.							
Reliability of Distribution systems - Customer oriented indices; Load and energy oriented indices; Application to radial systems; Effect of lateral distribution protection; Effect of disconnectors; Effect of protection failures; Method of network reduction; Temporary and transient outages; Inclusion of weather effects; Stochastic approach.							
Reliability definitions and concepts. Reliability indices and criteria: failure distribution function, reliability function, hazard function, a posteriori failure distribution.							
Probability distributions in reli Weibull, Lognormal, Rayleigh,	ability evaluation: Uniform, Gaussian, Exponential, Binomial and Poisson.	8	2				
System reliability evaluation using probability distributions: Series systems, Parallel systems, partially redundant systems, standby systems. Effect of Preventive maintenance on reliability.							
Reliability and Availability Alternating Renewal Processes	of Repairable Systems: Renewal Processes and .	5	1				
Life testing: Sequential testing	(type-I censored data), Simultaneous testing (type-II e testing of electronic components.	3	2				

		CO5	2	3		2											3
	Ē	CO4	2	3													3
Enginee	•	CO3	3	2													3
Reliabil	lity	CO2	3	2							<u> </u>			*			3
	F	CO1	3		- 55					- 55				1			3
CO-PO	5 191 6	rhhing	(3 - 3) PO1	PO2	5, 2 - PO3	- 10100 PO4	PO5		1 – PO7	PO8	x) PO9	PO10	PO11	PO12	PSO1	PSO2	PSC
) N/ -	nnin-	(2 0	Star	~ ^	Ma	dorat		1 1	Weel	z)						
	Dis	tributio	on Sys	stems	and	Subs	tatior	n (K3)								
CO5		ply the		-	-			-		valu	ate re	liabili	ty of C	Genera	ting S	system	ns,
CO4		lculate		•							-		· · ·				
CO3	-	plain t			-	-											
CO2	Dis	tingui	sh bet	ween	the 1	reliab	oility	indic	es of	repa	irable	e and	non-re	pairat	ole sys	stems	(K4
	pro	babilit	y distr	ibuti	on (K	(2)											
CO1	Ex	p lain ti	he ger	neral	conce	ept of	f relia	bility	y, rel	iabil	ity inc	lices,	reliab	ility fu	inctio	n and	
The stu	Ident	s of the	e cour	se sho	ould	be ab	le to										
Course	e Ou	tcomes	s:														
				()													
•		Discu		,													
•		Tutori	•			/2)											
•		Visua					ind U	Uaru))							
	n D	Class			re (cl	nalk a	and h	oard)	(D1)							
Conter	nt De	liverv	Meth	hod													
3	Re	liabilit	y Eng	ineer	ing: A	Aless	andro) Bir	olini.								
2		liabilit				•	0		0		les E	. Ebel	ing.				
1		liabilit				U		0.			•			Ronal	d N. A	llan.	
Refere																	
	•				-												
Reliabi					• 1											1	1
Failure		hanism	ns. Rel	liabil	itv pr	edict	ion.									2	Ū
Device																2	0

Open Elective-I

Course code	*
Category	Open Elective
Course title	Open Elective-I
Scheme and Credits	L-T-P: 3-0-0; Credits: 3.0;

*Course specific Code

Course code	EE/PC/B/S/411	
Category	Program Core	
Course title	Electrical Engineering Laboratory - V	
Scheme and Credi	its L-T-P: 0-0-3; Credits: 1.5;	
Pre-requisites (if a	any)	
EE/PC/B/S/411: E	Electrical Engineering Laboratory - V	Р
	m of a 3-phase Induction Motor	3
	asurement using Lloyd-Fisher Square	3
	case waveform generator	3
4. Study Of Pow	ver Transfer Control Using Series Voltage Injection	3
	libration of Impulse Voltage Generator	3
•	ion and V-curve of Synchronous Machine	3
=	oltage Transformer (V. T.)	3
8. Study of spee	ed control of DC Servo	3
9. Study of varie	ous system faults in a DC Network Analyser	3
10. Voltage distri	ibution along a string of suspension disc insulators	3
	o-lux diagram of a Street Light Luminaire	3
Arrear, Laboratory		6
Content Delivery	Method	
• Class r	room lectures (Chalk and Board) (D1)	
• Active	learning (D4)	
• Blende	ed/Hybrid learning (D5)	
• Discus	sions (D7)	
• Case S	tudies (D9)	
Course Outcomes		
	course should be able to the instruments required to perform the experiment $(K1, S1)$	
-	the instruments required to perform the experiment (K1, S1)	
	e range/ratings of the instruments identified (K2, S1)	
-	hend the objective of the experiment and Relate that with the acquire al knowledge (K3, S2)	a
	the circuit duly connecting selected instruments and other devices (K	2 82)
-	the data and prepare a detailed report. (K2, S2)	.2, 32)
	\mathbf{r} the data and prepare a detaned report. ($\mathbf{K}^2, \mathbf{S}^2$)	
CO DO Monrino	(3 – Strong, 2 – Moderate and 1 – Weak)	

CO-PO Maj	CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak) Electrical PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
Electrical		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Engineering	CO1	3	2	1						2				3		

Laboratory -	CO2	1	3	2				2			3	
V	CO3	1	3	2				2			3	
	CO4	1	2	3				2			3	
	CO5	1	1	2	3		1	2	1	1	3	

Course	cod	e					EE/	PS/B	8/S/4 1	12							
Catego	ry						Prog	gram	Sess	ional							
Course	title	;					Elec	ctive	Proje	ct &	Con	nputati	on-I				
Schem	e and	l Cre	dits				L-T	-P: 0	-0-3;	Cred	lits: 1	1.5;					
Pre-ree	quisi	tes (if	any))													
EE/PS/					•												Р
Student	· •		U								-			-			
-	problems about some state-of-the-art topics related to that domain, and prepare reports. Evaluations are made based on class performance, viva-voce, and report submitted													s. (39		
Evaluat	Evaluations are made based on class performance, viva-voce, and report submitted.																
Conter	t De	•															
•				-	g (D4)												
•		Blen	ded/I	Hybrid	d Lea	rning	(D5))									
•		Disc	ussio	ns (D	7)												
•		Case	Stud	lies (I) 9)												
٠		Proje	ects (D11)													
Course																	
The stu	dents	s of th	ne cou	irse sl	hould	be at	ole to)									
CO1	Rel	ate ar	nd ap	ply ac	quire	d kno	wled	lge of	f Elec	etrica	l Eng	gineeri	ing an	d ide	ntify tl	he pro	blem
	(K1	, S1)															
CO2	Rev	view l	iterat	ures a	and fo	rmula	ate th	e sol	ution	(K2	2, S1))					
CO3	Dev	elop	the so	olutio	n of t	he pro	oblen	n (K3	3,S2)								
CO4	Ass	ess th	e per	forma	ance c	of the	desig	gned	solut	ion (l	K6, S	53)					
CO-PC) Ma																
Electi	ve					PO4	PO5	PO6	PO7			PO10	PO11	PO12	PSO1	PSO2	PSO3
Project		CO1 CO2	3	2 2	1					1	2					3	
Frojeci		1112	1	L 2	1				1	1	2	1				5	1
Computa	tion	CO2	1	1	3	1				1	2					3	

Category Program Sessional Course title Seminar-I Scheme and Credits L-T-P: 0-0-3; Credits: 1.5; Pre-requisites (if any) EE/PS/B/S/413: Seminar-I Students, pertaining to each elective domain, have to learn and gain knowledge about some state-of-the-art topics related to that domain, present those topics before a panel of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Objectsions (D7) • Case Studies (D9) • Course Outcomes: • The students of the course should be able to • CO1 Relate and apply acquired knowledge of Electrical Engineering and identify releval topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
Scheme and Credits L-T-P: 0-0-3; Credits: 1.5; Pre-requisites (if any) EE/PS/B/S/413: Seminar-I Students, pertaining to each elective domain, have to learn and gain knowledge about some state-of-the-art topics related to that domain, present those topics before a panel of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) • Course Outcomes: • The students of the course should be able to • CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevat topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
Pre-requisites (if any) EE/PS/B/S/413: Seminar-I Students, pertaining to each elective domain, have to learn and gain knowledge about some state-of-the-art topics related to that domain, present those topics before a panel of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevat topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1)	
EE/PS/B/S/413: Seminar-I Students, pertaining to each elective domain, have to learn and gain knowledge about some state-of-the-art topics related to that domain, present those topics before a panel of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
Students, pertaining to each elective domain, have to learn and gain knowledge about some state-of-the-art topics related to that domain, present those topics before a panel of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevation to pics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
some state-of-the-art topics related to that domain, present those topics before a panel of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevan topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	Р
of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method Active learning (D4) Blended/Hybrid Learning (D5) Discussions (D7) Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
of teachers, and prepare reports on those topics. Evaluations are made based on presentation, discussion/viva-voce, and report submitted. Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	•
Content Delivery Method • Active learning (D4) • Blended/Hybrid Learning (D5) • Discussions (D7) • Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevation to pics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	39
 Active learning (D4) Blended/Hybrid Learning (D5) Discussions (D7) Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
 Active learning (D4) Blended/Hybrid Learning (D5) Discussions (D7) Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
 Blended/Hybrid Learning (D5) Discussions (D7) Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
 Discussions (D7) Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
 Case Studies (D9) Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevation topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3) Co4 Case Studies (D9) Co3 Co4 Co4 Co4 Review in the subject to the teachers and their peers (K5, S3) Co4 Co4<td></td>	
Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
Course Outcomes: The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
The students of the course should be able to CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3)	
 CO1 Relate and apply acquired knowledge of Electrical Engineering and identify relevant topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3) 	
 topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3) 	
 topics of interest (K1, S1) CO2 Review literatures on the topics of interest to gain knowledge about the state-of-the (K2, S1) CO3 Prepare presentation based on the knowledge acquired (K3,S2) CO4 Explain the subject to the teachers and their peers (K5, S3) 	nt
(K2, S1)CO3 Prepare presentation based on the knowledge acquired (K3,S2)CO4 Explain the subject to the teachers and their peers (K5, S3)	
(K2, S1)CO3 Prepare presentation based on the knowledge acquired (K3,S2)CO4 Explain the subject to the teachers and their peers (K5, S3)	-art
CO4 Explain the subject to the teachers and their peers (K5, S3)	
CO-PO Manning $(3 - \text{Strong}, 2 - \text{Moderate and } 1 - \text{Weak})$	
CO-PO Manning $(3 - \text{Strong } 2 - \text{Moderate and } 1 - \text{Weak})$	
coronapping (5 bitolig, 2 bitolicitatio and 1 bitolicitatio	
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2	
Elective CO1 3 2 1 2 2 3	PSO3
Seminar J CO2 3 2 2 2 1 3 3	PSO3
CO3 1 1 2 2 3 2 2 1 3 $CO4$ 2 1 2 2 3 2 2 1 3	PSO3

Course	code					EE/	PS/E	B/S/4	14							
Catego	ry					Pro	gram	Sess	ional							
Course	title					Elec	ctrica	l Ma	chine	Desi	gn-II					
Schem	e and C	redits	5			L-T	-P: 0	-0-2;	Cred	its: 1.	.0;					
Pre-rec	quisites	(if an	y)													
EE/PS/	B/S/414	: Ele	ctrica	l Ma	chin	e Des	sign-	II							Р	
Design	of Integ	ral ho	orse-p	ower	Dire	ct Cu	rrent	Mac	hines						30	
Design	of Liftir	ng Ma	ignet								•				9	
Refere	nce Boo	ks:														
1	A Cour	se in I	Electr	ical l	Mach	ine D	Desig	n: A.	K. Sh	awne	у					
2	Electric			-												
3	Perform	nance	and I	Desig	n of A	Alter	natin	g Cui	rent	Mach	ines: 1	M. G.	Say			
Conten	t Delive	•														
•		ass ro				nalk a	and B	oard) (D1)						
•		tive l		- ·												
•	Bl	ended	l/Hyb	rid le	arnin	g (D:	5)									
•	Di	scuss	ions (D7)												
•	Ca	ise Sti	udies	(D9)												
	Outcor															
The stu	dents of															
CO1	Relate		ired k	nowl	edge	of In	tegra	l hor	se-po	wer d	lc mac	hine	and Li	ifting 1	Magnet	
	(K1, S	,														
CO2				ons c	of dif	feren	t part	s of I	ntegr	al ho	rse-po	wer d	lc mac	hine a	nd Lift	ing
	Magne	•														
CO3		1					U	ed sol	lution	and	suitab	ly m o	dify t	he des	ign to 1	neet
	the set	-					,						~ ~ `			
CO4	Analyz			-								(K4,	S3)			
CO5	Prepar	re a co	ompre	ehens	ive d	etaile	ed de	sign 1	repor	t. (K5	, \$3)					
00.50			~		0 7					1 \						
CO-PC) Mappi	-		-							DO10	DO11	DO1	DCO1	DGOA	DCOO
	_ CO1	PO1 3	PO2 2	PO3 1	P04	P05	PO6	P07	PO8	PO9 1	PO10	POII	PO12	PSO1	PSO2	PSO3
Electric	al CO2		2 3	1 2						1						
Machin	CO3		2	3					1	1						
Design-	II CO4		2	2	3		2	2	1	1						
	CO5	1	2	2			1		2	1		3	1			

Course code	EE/PC/B/S/415
Category	Program Core
Course title	General Viva-Voce
Scheme and Credits	L-T-P: 2-0-0; Credits: 2.0;
Pre-requisites (if any)	

EE/PC/B/S/415: General Viva-Voce	L	Т
Based on the theory and sessional subjects covered under B. E. E. Programme.	26	0

• Discussions (D7)

Course Outcomes:

The students of the course should be able to

CO1	Present themselves in a credible manner before a board of interviewers. (K1).
-----	--

CO2 **Communicate** effectively. (K2).

CO3 **Apply** the knowledge acquired in the general domain of Electrical Engineering over the four year programme to answer the questions posed by the board. (K3).

СО-РО М	[appi1	ng (3	– Stro	ong, 2	– Mc	oderat	te and	l 1 – V	Weak))						
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
General	CO1	3	2	2			1	1	1	1	1	1	2			
Viva-Voce	CO2	2	2	2	1		1	1	1	2	3	1	2			
	CO3	3	2	2	1		2	1	1	2	2	1	2			