Third Year Second Semester

Cours	se code	EE/PC/B/T/321										
Categ	egory Program Core Program Core Program Core											
Cours	se title	Power System Performance										
Schen	ne and Credits	L-T-P: 2-1-0; Credits: 3.0;										
Pre-r	equisites (if any)											
EE/P	C/B/T/321: Power System	Performance	L	Т								
Basic	concept of active and	reactive power control of Synchronous generator.										
Interd	ependence of active power	with frequency and reactive power with voltage and	2	1								
conce	concept of decoupling.											
Speed	Governing System: Descr	ription of Speed Governor, Speed changer and main	2	0								
compo	components of speed governing system, principle of operation.											
Load	frequency control: Represe	ntation of speed governing system, effect of governor										
droop	on load sharing among g	enerators, dependence of load on frequency, system	4	2								
inertia	a. Modeling and analysis of	of single area load-frequency control, supplementary		2								
contro	control, concept of control area.											
Power system stability: Steady state and transient stability, Swing equation and its												
numer	numerical solution, equal area criterion for transient stability, improvement of transient 5 1											
stabili	stability.											
React	ive power control: Role of	excitation system, main & pilot exciters, description	2	0								
of diff	terent types of excitation sy	stems.										
Per-U	nit representation of Power	system– Selection of base quantities, percent and per	2	1								
unit va	alues, advantage of per unit	system.										
AC 1	ransmission – Power flow	v through a line, power circle diagram, line charts,	2									
active	power flow and voltage	control in transmission system. Line loadability and	3	I								
Power	e dependence.	tame and load flow analysis Cause Saidal method										
Power	Thow in interconnected sys	tenis and load now analysis – Gauss –Seider method.	4	I								
Symm	netrical fault analysis.		2	1								
Eleme	ents of HVDC Power transr	nission	2	0								
Econo	omic operation of power pla	ant – cost curves, heat rate, incremental rate, economic	2	1								
load s	haring among generating up	nits.	Z	1								
Refer	ence Books:											
1	Power System Analysis: J	. J. Grainger & W. D. Stevension, McGraw Hill										
2	Power System Engineerin	g: I. J. Nagrath & D. P. Kothari, Tata McGraw Hill										
3	3 Electric Energy System Theory: O. I. Elgerd, Tata McGraw Hill											
4	Elements of Power System	n Analysis: W. D. Stevenson, McGraw Hill.										

5 Power System Analysis: A. R. Bergen & V. Vittal, Pearson Education

6	Power System Analysis Operation and Control: Chakrabarti & Halder, PHI Learning Pvt.
	Limited.

7 Electrical Power Systems: Ashfaq Husain, CBS Publishers & Distributors Pvt. Ltd.

Content Delivery Method

- Class Room lecture (Chalk and Board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

CO1	Discuss and explain per unit representation of Power System and power flow and voltage
	control of a transmission system. (K2)

- CO2 **Analyse** Gauss-Siedel load flow and symmetrical fault. (K4)
- CO3 **Describe** HVDC power transmission and economic operation of power plant. (K2)

CO4 **Illustrate** load frequency control. (K3)

CO5 **Illustrate** power system stability. (K3)

CO6 **Illustrate** Excitation systems and their various types used in generating stations. (K3)

	II C	J <		0,												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3			1											
Power	CO2	2	3													
System	CO3	3														
Performance	CO4	2	3													
	CO5	2	3													
	CO6	2	3													

Cours	se code	EE/PC/B/T/322						
Categ	gory	Program Core						
Cours	se title	High Voltage Engineering						
Scher	ne and Credits	L-T-P: 2-1-0; Credits: 3.0;						
Pre-r	equisites (if any)							
EE/P	C/B/T/322: High Voltage E	ngineering	L	Т				
High	voltage power transmission a	nd distribution.	1	0				
Insula	tors: Type of insulators and	their applications, voltage distribution and string	n	1				
efficie	ency of disc insulators.		Z	1				
Coror	a: Theory of corona formation	on, corona loss and radio interference.	2	1				
Overv	oltage phenomena: Lightning	g and switching surges. Travelling waves:	2	1				
Reflec	ction and refraction with resp	ect to different type of line terminations.	2	1				
Overv	oltage protection: Grounding	practice and over-voltage due to earth fault,	C	1				
lightn	ing arresters and surge s	uppressors.	Z	1				
Insula	tion coordination scheme of	open-air substation.	1	0				
High	voltage cables: Single core,	belted, XLPE and gas-filled. Inter-sheath grading.	2	2				
Requi	rement of extra high voltage	cables.	Z	Z				
Bushings: Non-condenser and condenser bushings, field distribution.11								
Statist	tical Methods Generation of I	High AC Voltage – Testing transformer and its	2	1				
cascad	de connection, single-phase s	eries resonance circuit	3	1				
Gener	ration of High DC Voltage –S	Single-stage and multi-stage symmetric as well as	2	1				
asym	netric voltage multiplier circ	uits	2	1				
Gener	ation of Impulse Voltage –Si	ngle-stage and multi-stage impulse generators	2	2				
circui	ts, Triggering and synchroniz	cation with CRO	-	-				
Measu	arement of Peak value of high	gh AC Voltage :Frequency dependent method -						
Chubl	b &Fortescue Method, Freque	ency independent methods- Davis-Bowdler	2	2				
Metho	od, Rabus Method, Sphere-	Gap Method						
Measu	arement of RMS value of hig	h AC Voltage – Capacitive Voltage Transformer,	1	1				
Poten	tial Dividers, Electrostatic V	And the second s		-				
Measu	irement of High DC Voltage	-Ammeter in series with high resistance	1	0				
High	Voltage type tests of insulato	rs, Impulse test of transformers as per relevant	2	0				
Indiar	n standards.							
Dofor	ana Rooks.							
1	High Voltage Engineering:	Kuffel and Zaengl						
2	High Voltage Measurement	Techniques: A. J. Schwab						
3	High Voltage Engineering	D V Razevig						
4	4 High Voltage Engineering: Naidu & Kamaraiu							

- Class Room lecture (Chalk and Board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Course Outcomes:																
The stud	e students of the course should be able to																
CO1	Desc	ribe th	e adv	vanta	ges o	of Hi	gh V	oltag	ge AO	C and	DC	Power	· Trans	missio	n (K2)		
CO2	Expl	ain va	rious	s typ	es o	of in	sulat	ors,	Cabl	es a	nd t	he im	oortand	ce of	Insul	ation	Co-
	ordir	ordination (K2)															
CO3	Ana	Analyse the Corona phenomenon, categorise Grounding and Analyze Lightning &															
	Switching Overvoltages (K4)																
CO4	Understand the methods of Generation of High AC Voltage, Generation of High DC																
	Voltage and Generation of Lightning Impulse Voltage (K2)																
CO5	Desc	ription	n of t	he m	etho	ds of	Higl	n Vo	ltage	mea	surei	ment (l	K2)				
CO-PO	Map	ping (3	S-St	rong	, 2 –	Mod	lerate	e and	1 –	Weal	K)						
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	1													
High Vo	Voltage CO2 3 1 1																
Enginee	ering	CO3	3	1	1			2									
		CO4	3	1													
	CO5 3 1 </td																

Course code	EE/PC/B/T/323						
Category	Program Core						
Course title	Electrical Utilization & Illumination						
Scheme and Credits	L-T-P: 3-0-0; Credits: 3.0;						
Pre-requisites (if any)							
EE/PC/B/T/323: Electrical Utiliz	ation & Illumination	L	Т				
Electric heating: Basic advantages	s, classification.	1	0				
Resistance Heating: basic princip	les of direct and indirect heating types.						
Control of heating: Open Loop te	chniques: graded resistance, tapped inductor. Solid						
state control – SCR, on-off contr	ol, ac phase control, integral cycle control. Closed	3	0				
loop techniques: On-off, Proportion							
Properties and design of heating elements.							
Electric Arc Heating: basic principles of direct and indirect heating types. 1-phase							
and 3-phaseAC and DC arc types. Their power supply system, requirement of reactor.							
Electric Arc Furnaces (EAF); Construction, principle of operation and relative							
advantages of direct and indirect Arc furnaces. Electrode Regulation system.							
Induction Heating: basic principles and applications. Induction Furnaces: basic							
principles of coreless and core	3	0					
operating frequency.							
Dielectric Heating: basic principle	es and applications.	1	0				
Principle of Thermostat control	for cooling.	1	0				
Harmonic current generation du	e to non-linear loads. Effect of Harmonic currents						
on power supply system and its	components. Power factor degradation and other	3					
effects of harmonics. Displaceme	ent Factor, Distortion Factor and Total Harmonic	5	0				
Distortion. Power line filters, Intr	oduction to near-unity power factor rectifiers and						
Active Power Filters.							
Storage Batteries: common types	and their characteristics and applications. Principles						
of charging, modes of charging, e	g., Constant current, constant voltage, tickle, float,	1	0				
boost, etc. Charge termination	methods, common charger types. Temperature	7	U				
compensation of charging voltage.	Battery size estimation.						
Uninterruptible Power Supplies: Basic concepts, schemes, back-up, redundancy,							
transfer switch.							
Light and electromagnetic radiat	ion; light generation principles - incandescence,						
luminescence; sources of light-the	ermal radiator-blackbody radiator, laws of thermal	2	0				
radiation; daylight and artificial	light, spectral power distribution (SPD) of light	2	U				
sources;							
Radiometric and Photometric qua	ntities, visual response curve of standard observer,	1	Ο				
Radiometric and Photometric qua relation between lumen and watt, p	hotometric standards;	1	0				

Photo	metry-visual & physical photometry, Bench Photometer, Illuminance meter,	2	0						
Distri	hance meter								
Distri	intensity distribution-zone factor, zonal lumen. Integrating Sphere.								
Intens	Lamps-general classification tungsten filament tungsten halogen ETL CEL HPSV								
	Lamps-general classification, tungsten filament, tungsten halogen, FTL, CFL, HPSV,								
MH,	function, electromagnetic and electronic type, principle of operation; electrical and 2 0								
Tuncti	on, electromagnetic and electronic type- principle of operation; electrical and								
pnoto	metric specifications of lamps;	1	0						
Lumi	haire-its function and classification; applications	1	0						
Eleme	entary lighting design-design considerations, design parameters, BIS	2	0						
recom	mendation, indoor general lighting design by Lumen method.								
Introc	luction to lighting control. Different lighting control strategies, Lighting Control	2	0						
Proto	col								
Conce	epts of energy efficient lighting design and payback calculation.	2	0						
Huma	in Factors in lighting.	1	0						
Eleme	ents of Outdoor Lighting.	1	0						
Refer	ence Books:								
1	Art & Science of Utilisation of Electrical Energy: H. Partab, Dhanpat Rai & Sons	•							
2	Storage Batteries: G. W. Vinal, John Wiley & Sons Inc.								
3	Power Electronics: N. Mohan, T. M. Undeland & W. P. Robbins, John Wiley & S	ons.							
4	Power Electronics: P. C. Sen, Tata McGraw-Hill Publishing Co. Ltd.								
5	Modern Power Electronics: P. C. Sen, Wheeler Publishing.								
6	Thyristorised Power Controllers: G. K. Dubey, S. R. Doradla, A. Joshi & R. M. K	. Sinha	,						
	Wiley Eastern Ltd.								
7	Lamps and Lighting: Edited by J.R.Coaton and A.M.Marsden, 4th Edition.								
8	Lighting for energy efficient luminous environments: Ronald N. Helms & M Clay	/ Belche	er.						
9	Illumination Engineering: From Edison lamp to the LASER: J. B. Murdoch								
10	Electric Discharge Lamps: John F. Waymouth.								
11	Human Factors in Lighting: P. R. Boyce.								
12	Lighting Control Hand book: Craig Dilovie.								
13	Interior Lighting: Fundamentals, Technology and Application: W. J. M. van Bom	mel.							
14	National Lighting Code 2010: Bureau of Indian Standard.								
15	Applied Illumination Engineering: Jack L. Lindsey, Second Edition.								
16	Road lighting: W. J. M. van Bommel & J. B. de Boer.								
17	Lighting Engineering: Applied Calculations: R. H. Simons and Robert Bean.								
18	Energy Management in Illumination Systems: Kao Chen.								
	·								

I

- Class Room lecture (Chalk and Board) (D1)
- Visual presentation (D2)
- Discussion (D7)

Course	Yourse Autoomes																
The stur	The students of the course should be able to																
	D ecoll the course should be able to																
COI	Recall the concept of Electrical power and energy losses, and basic principles of Electro																
	cher	chemical cells, concepts of radiators, light as an electromagnetic wave, relating lumen to															
	watt, fundamental terminologies of Illumination Engineering.(K1)																
CO2	Discuss the construction and operation of power level filters, electrical furnaces, secondary																
	batteries and uninterrupted power supplies, different light sources and there operating																
	prin	ciples.	Law	s of I	llumi	natic	on Er	ngine	ering	g. Ph	otom	etry, d	ifferen	t lumi	naires	and con	ntrol
	gear	$(K2)^{1}$						0	ć								
CO3	Dev	elon o	ver-a	ll sch	emat	ics o	f poy	ver l	evel	filter	s ele	ectrical	furnad	res and	unint	errunte	d
005	now	or sup	nlias	light	ing o		mont		udin	n liał	s, en	contro	lscha	no lia	hting l	avout f	for
	pow	er sup	piles,	ngni		quip.	······································	. mei	uum	g ngi	ning	contre	n sener	ne, ng	nung i	ayout I	.01
004	Indo	or ligi		appin		n. (K	.3)		C	1	1	01	1	1.0		1 •	
CO4	Con	npare	and a	analy	ze di	ttere	nt tyj	pes o	of pov	wer l	evel	filters,	electri	cal fur	naces,	batteri	es,
	unin	terrup	ted p	ower	supp	lies,	diffe	rent	light	ing e	quip	ment a	nd diff	erent l	ighting	g desigi	a.
	(K4))															
CO5	Desi	igna co	omple	ete lig	ting	g solı	ution	incl	uding	g adv	ance	d light	ing co	ntrol te	echniqu	ues wit	h
	paył	back ca	alcula	ation 1	for In	dooi	app	licati	ion. (K5)							
CO-PO	O Mapping (3 – Strong, 2 – Moderate and 1 – Weak)																
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
Electri	cal	CO2	3	2	1												
	n &	CO3	2	2	3												
mumna	11011	CO4	3	2	2			2	2								
	CO5 2 2 3 <																

Course code	EE/PC/B/T/324					
Category	Program Core					
Course title	Electrical Drives					
Scheme and Credits	L-T-P: 3-0-0; Credits: 3.0;					
Pre-requisites (if any)						
EE/PC/B/T/324: Electrical Dr	ives	L	Т			
Motor control components an	d Schemes :					
Contactors, relays, limit switch	es, etc. Motor control circuit like Start-Stop control,	3	0			
Star-Delta starter, Auto-Transfe	ormer starter, forward-reverse changeover.					
Drive specifications and Basic	e terminology :					
Classification of Drives, Base s	2	0				
drive, etc. Four quadrant repres						
Stability of Drives Systems :						
Dynamics of loading of motor	with different types of mechanical load. Choice of	2	0			
couplings and bearings.						
Thermal Characteristics :						
Heating and cooling of motors, operating duty cycles.						
Dynamics of Starting :						
Starting transients, Acceleration	n time, energy loss in starting. Effect of flywheels.	2	0			
Regeneration in Drives :		4	0			
Dynamic braking, regenerative	braking, dc injection, plugging.	4	0			
Electric Traction :						
General introduction and rec	quirements, speed-time curve mechanics in train	4	0			
movement. DC and AC traction	supplies. Current collectors. Traction motors.					
Linear motors and magnetic l	evitation.	1	0			
Basics of DC Motor Drives :						
Solid state control of dc moto	rs - basic principles. Armature current control with					
constant flux and field weake	ening. Simple modeling of a separately excited dc	5	0			
motor. Drive schemes with arm	ature voltage feedback, IR-compensation, and tacho-					
feedback for both constant flux	and field weakening.					
Three Phase Induction Motor	· Drives :					
Solid state control of induction						
fluxand field weakening. Simp	ble modeling of an induction motor. Drive schemes	5	0			
withterminal voltage feedback	and slip-compensation, also with tacho-feedback for					
bothconstant flux and field wea	kening.					
Synchronous Motor Drives :						
Solid state control of synchro	phonous motors – basic principles. V/f control with	3	0			
constant flux and field weaken	ing. Simple modeling of a synchronous motor. Drive	2				
schemes with open loop and wi	th position feedback.					

Realisa	tion of c	onver	ters s	ysten	ı for a	ac an	nd dc	drive	s :							
Realisat	ion of th	the total converter system for ac and dc drives using choppers, Phase ctifiers Dual converters Voltage Source Inverters (VSI) Current 3 0														
controll	ed rectif	iers,	Dual	conv	erters	s, Vo	oltage	Sou	ce I	nver	ters ((VSI),	Curr	rent	3	0
Source	Inverter	s (CS	SI). C	Currer	nt Co	ontrol	led V	VSI a	and	Cycl	o-con	verter	s. Ba	asic		
operatin	g princip	oles ar	nd cha	racter	istics	of th	ne sch	emes.								
Protect	Protection of Drives :															
Protecti	on schem	nes fo	r over	all dri	ve sy	stem	s.								3	0
Power e	lectronic	contr	rolled	starti	ng of	dc ar	nd ac	notor	S							
Referen	rence Books:															
1	Fundamentals of Electrical Drives : G. K. Dubey															
2	Power Electronics and Motor Control : W. Shepherd, L. N. Hulley & D. T. W. Liang															
3	Electric	Electric Drives : N. K. De, P. K. Sen														
4	Power	Power Semiconductor Controlled Drives: G. K. Dubey														
5	Contro	Control of Electric Machines: Irving L. Kosow														
6	Moder	n Elec	etric T	ractio	n: H.	Parta	ab.									
7	A First	Cour	se on	Electi	rical d	lrives	s: S. K	C. Pill	ai							
8	Electric	e Mot	or Dri	ves: I	R. Kri	shna	n									
<u>a</u>																
Conten	t Deliver	y Me	thod					1. (5)	4 \							
•	Clas	ss Ro	om lee	cture ((Chall	k and	l Boar	rd) (D	1)							
•	Vis	ual pr	esenta	ation ((D2)											
•	Dise	cussic	on (D7	7)												
Course	Outcom	es:														
The stud	lents of t	he co	urse s	hould	be ab	ole to										
CO1	Interpr	et the	contr	ol circ	cuits a	ind p	ower	circui	ts of	elect	ric dr	ives s	ystem	n (K2).		
CO2	Explain	the c	contro	1 mec	hanis	m of	com	nonly	used	d pov	ver el	lectroi	nic co	ontrolle	ers use	d for
	drive sys	stems	, their	main	tenan	ce, sa	afety a	and po	otenti	ial co	osts (H	(2).				
CO3	Select of	drive	specif	ïcatio	ns an	d cor	nprel	nend	the in	npor	tance	of ter	npera	ture ri	se and	duty
	cycle (K	(3)														
CO4	Analyse	the t	ransie	nt cha	racte	ristic	s of e	lectric	e mot	ors d	uring	starti	ng an	d brea	king (I	X 3).
CO5	Compre	ehend	l the b	asics	of ele	ctric	tracti	on sys	stem	(K3)	•					
CO-PO	Mappin	ng (3 -	– Stro	ng, 2	– Mo	derat	e and	1 - W	/eak)			1			1	-
	601	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Flootwige		<u> </u>	2	1				1					1			
Drives	$\begin{array}{c} CO2 \\ CO3 \end{array}$	1	2	3				1					1			+
	CO4	1	2	1	3			1					1			
	CO5	1	3	2	L			1					1	<u> </u>		

Course code	EE/PC/B/T/325
Category	Program Core
Course title	Process Instrumentation and Control
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;
Pre-requisites (if any)	

EE/PC/B/T/325: Process Instrumentation and Control	L	Т
Introduction to process control loop and salient components. Process control		
terminology. Process instrument diagram. Self-regulating and non self-regulating	2	1
processes.		
Controller implementation. Electronic analog P, PI, PD, PID controllers. Pneumatic		
controllers: baffle-nozzle amplifiers, relay valve, pneumatic P, PI, PD, PID	3	1
controllers.		
Introduction to digital controllers. Concept of sampling. Digital P controller, digital		
PI controller employing rectangular and trapezoidal integration, digital PD		
controller employing backward difference algorithm, digital PID controller.	4	2
Provision for anti-integral windup and anti-derivative kick. Auto/Manual modes of	4	2
operation. Incremental form of PI/PID controller. Bumpless transfer. Design of		
controllers with auto-tuning method employing relay feedback.		
Signal transmission systems in process control loop. Analog voltage/current		
transmission standards. Digital serial transmission standards: RS-232C, RS-422,	1	1
RS-423, RS-485. Importance of transmission noise. MODEM based signal	1	1
transmission.		
Importance of time delay in process control loop. Practical examples. Smith	1	1
predictors/controllers.	1	1
Final control elements in process control loop. Types of Actuators: Pneumatic,		
Electrical, Hydraulic. Positioners. Pneumo-electric converters. Linear and rotary		
actuators. Linear pneumatic actuators with and without positioners. Control valves:	3	1
single stem and double stem sliding valves, butterfly valves, ball valves. Valve		
sizing. Methods of fluid control: variable delivery, bypass.		
Concept of Processes and Units: Process statics, steady state operating point,	1	0
mass and enthalpy balance.	1	0
Modeling of process dynamics: Modeling of simple Industrial processes. Standard		
first order process model with delay, time and frequency response of standard first	4	1
order process model with delay.		
Single loop control of standard first order process plants: P, PI, PD and PID		
control, Controller tuning, Frequency domain design, Ziegler-Nichol's and other	3	2
empirical tuning methods.		
Feed-forward control: Configurations, advantages, limitations and industrial	1	1
applications.	-	-
Multi-loop and Cascade control: Configurations, interaction and decoupling,	1	1

industrial applications.		
Ratio control: Principles, configurations including cascade configuration.	1	1
Case study: Boiler Control.	2	0

Reference Books:

- 1 Principles and Practice of Automatic Process Control: Smith and Corripio
- 2 Principles of Process Control: Patranabis
- 3 Automatic Process Control: Eckmann
- 4 Process Control Systems: Shinskey
- 5 Process Systems Analysis and Control: Coughanowr & Koppel
- 6 Chemical Process Control: Stephanopoulos
- 7 Process Dynamics and Control: Dale E. Seborg, Thomas F. Edgar & Duncan A Mellichamp

Content Delivery Method

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

CO1	Describe basic concepts of processes, process control loop and its salient components.
	(K1)
CO2	Discuss modeling of process dynamics and single-loop and multi-loop control of process
	plants. (K2)
CO3	Develop concepts for implementing electronic, pneumatic and digital P, PI, PID
	controllers, actuators, control valves and signal transmission systems.(K3)
CO4	Analyze constraints in implementation of controllers and their solutions. (K4)
CO5	Design controllers, actuators and control valves from theoretical and implementation
	perspective. (K5)
CO-PO	Mapping (3 – Strong, 2 – Moderate and 1 – Weak)

				-												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Process	CO1	3	2	1												
Instrume-	CO2	3	2	1						1						
ntation and	CO3	2	2	3	2			1								
Control	CO4	2	2	2	3			1								
	CO5	2	2	3	2	2	2	1	1	2						

Course code	EE/PE/H/T/326
Category	Program Elective
Course title	Honours Paper I (Basket-1)
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;

Commence			
Course code	LE/PE/H/1/320A		
Course title	Nonlinear and Optimal Control		
Scheme and Credits	L-T-P: 3-1-0: Credits: 4 0:		
Pre-requisites (if any)	L-1-1. 5-1-0, Cicuits. 4.0,		
Tre-requisites (if any)			
EE/PE/H/T/326A: Nonlinea	r And Optimal Control	L	Т
Nonlinear Control			
Nonlinear Models and Non	linear Phenomena, Examples of nonlinear systems,	4	1
Pendulum, Mass-Spring Sy	ystem, Negative-Resistance Oscillator, , Common	4	1
Nonlinearities, Some Commo			
Nonlinear System Analysis:	Concepts of Phase Plane Analysis, Phase Portraits,		
Singular Points, Symmetry in	Phase Plane Portraits, Construction of Phase Portraits,	4	2
Phase Plane Analysis of Line	ar and Nonlinear Systems, Existence of Limit Cycles;		
Describing function Fundame	entals, computation of Describing Functions, describing		
function analysis of Comr	non Nonlinearities, the Nyquist Criterion and Its	2	2
extension, existence of Lin	nit Cycles, Stability of Limit Cycles, Reliability of	3	2
Describing Function Analysis	S.		
Stability Analysis of Nonlin	ear Systems: Lyapunov's First Method, Lyapunov's		
Second Method, Lyapunov A	analysis of Linear and Nonlinear Systems, Concepts of	5	1
Stability for Autonomous and	Non-Autonomous Systems		
Nonlinear Control System D	esign: Control Design Based on Lyapunov's Method,		
Feedback Linearization, Back	stepping, Variable Structure Control with Overview of	3	2
Sliding Control.			
Optimal Control			
Introduction to Optimal C	ontrol, Formulation of Optimal Control Problem,		
Characteristics of Plant, M	linimum-Time Problem, Minimum-Energy Problem,	3	1
Minimum-Fuel Problem, St	ate Regulator Problem, Output Regulator Problem,		
Tracking Problem and Overvi	iew of Calculus of Variations.		
Minimization of Functions,	Minimization of Functionals, Overview of some	2	2
Computing Tools: Steepest D	escent Method, Fletcher-Powell Method.	3	2
The Regulator Problem: R	eview of Regulator Problem, The Hamilton-Jacobi		
Equation, Discrete-Time Lin	near State Regulator, Continuous-Time Linear State		
Regulator, Time-Invariant L			
Equation, Linear Regulator w	5	2	
Selection for Single Input Sys			
Tracking Control Scheme: T	he Problem of Achieving a Desired Trajectory, Finite-		
Time Results, Infinite-Time F	Results.		
Properties of Regulator Sy	stems with a Classical Control Interpretation: The		
Regulator from an Engine	eering Viewpoint, Some Classical Control Ideas:	4	2
Sensitivity, Complementary			

Sensitiv	ity,	and F	Robus	tness,	, Ga	in 1	Margi	n, F	Phase	Ma	rgin,	and	Time	e-Dela	ay		
Tolerand	ce, Ir	sertio	n of 1	Nonli	neari	ties,	Over	view	of 7	The I	nvers	se Op	timal (Contr	ol	2	1
Problem	ı.																
Referen	ce B	ooks:															
1 4	Appli	ed No	nlinea	ır Coı	ntrol:	J. E	. Sloti	ine &	: W.]	Li, PH	H Inte	ernati	onal.				
2 1	Nonli	near S	ystem	ns: H.	K. K	Chali	l, PH.										
3 1	Mode	ern Co	ntrol S	Systei	n Th	eory	: M. C	Gopal	l, Wi	ley Ea	aster	n Lim	ited.				
4 (Optin	nal Co	ntrol t	heory	y - A	n Int	roduc	tion:	Don	ald E	. Kir	k.					
5 5	Syste	ms and	l Con	trol: S	Stani	slaw	H. Za	ık.									
6 (Optin	nal Co	ntrol:	Linea	ar Qu	iadra	tic M	ethod	ls: Bi	rian D) . O.	Ande	rson ar	nd Joh	nn B. N	Moore.	, PH.
7 1	Nonli	near S	ystem	ns An	alysi	s: M.	Vidy	vasag	ar								
8 1	Non-	linear S	Syster	ns Ai	nalys	is Sta	ability	and	Cont	rol: S	Shanl	kar Sa	stry.				
9 1	Nonli	near S	ystem	ns: H.	K. K	Chali	I, PH						•				
10	Contr	ol Sys	- tem E	ngine	ering	g: Na	grath	and	Gopa	ıl.							
				0		-	<u> </u>										
Content	t Deli	ivery I	Metho	od													
•	(Class I	Room	lectu	re (C	halk	and I	Board	1) (D	1)							
•	•	Visual	prese	ntatio	on (D	2)											
•	,	Tutoria	ı al (D3	5)		,											
•	1	Discus	sion (, D7)													
		015005		21)													
Course	Outc	omes:															
The stuc	lents	of the	cours	e sho	uld b	e abl	e to										
CO1	Iden	tifv d	ifferer	nt typ	es of	fnon	linear	ities	and	nonli	near	syster	ms. Int	terpro	e t forr	nulatio	on of
	Onti	mal Co	ontrol	Prob	lems	Res	state (Calci	ilus c	of Vai	iatio	ons (K	2).	r			
CO2	Con	struct	Phas	e no	rtrait	<u>s S</u>	ketch	Des	scribi	ng F	unct	ions f	for Co	mmo	n Nor	linear	ities
002	Inte	rnref (the co	ncent	ofn	ninin	nizatio	on of	Func	ng i rtions	and	Funct	ionals	(K3)	11101	iiiieui	nics,
CO3	Inve	stigat	e the	Stabi	lity c	f No	nline	ar Sv	stem	$\frac{10115}{10115}$	und	I van	unov's	and l	Ponov	's met	hods
005	for 4	Jutono	mous	and 1	Non-		nome	ui Sy	vsten	ns (K	4)	Lyap	unov s	and	opov	5 met	.1100.5
CO4	Inve	stigat	e the l		ator	and '	Frack	ing P	roble	me s	T). Solve	Ricc	ati Equ	ation	$(\mathbf{K}A)$		
CO5	Svnt	hosis	$\frac{1}{\mathbf{of}}$	nline	ar s	icton	n wi	$\frac{115}{1}$	edba	ck li	neari	zation	back	retenn	$\frac{(\mathbf{I}\mathbf{X} + \mathbf{j})}{\mathbf{i}\mathbf{n}\mathbf{\sigma}}$	nd var	iable
005	struc	uicsis stura d	osign	moth	ar sy ode (VSICH K2)	15 WI		euua		licari	201101	I, Uach	stepp	ing ai	iu vai	laule
C06	Ann	roiso	tho o	oncor	ous ($\frac{KJ}{f}$	naitiv	it., (Comr	lomo	ntor	v Son	aitivity	, and	Dobu	etnose	and
000	For	nulote	the U	nvers	a On	1 DC	l Con	trol E	Conn Droble	menie	K_{5}	y Sen	SILIVILY	anu	Robu	501055	anu
	FOII	nulate		livers	e Op	tiina			1000	51115 (.	KJ).						
	Мат	nin- '	2 0	tuc r	2	Mad	anota	ond 1	1 13	Vacl-)							
CO-PO	wiap	ping ((3 - 3)	liong	, 2 -				I - W	eak)	DOO	DO10	DO11	DO12	DCO1	DCO1	DCO2
Nonline	ar –	CO1	3	2	r03	r04	1	r00	r0/	ruð	ruy	1	run	1	1501	r502	r503 3
and	_	CO2	3	2	2	1	2					1		1			3
Optim	al -	CO3	3	2	2	2	2							1			3
Contro)	CO4	3	2	2	1	2		1		1		1	1			3
•				-	•		-	-	-								

CO5	3	2	2	1	2	1				1		3
CO6	3	2	2	1	2	1	1	1	1	2		3

Course code	EE/PE/H/T/326B							
Category	Program Elective							
Course title	Condition Monitoring of Electrical Systems							
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;							
Pre-requisites (if any)								
EE/PE/H/T/326B: Condition N	Ionitoring of Electrical Systems	L	Т					
Introduction to condition mor	nitoring, understanding the role of insulation in	3	1					
equipment, introduction to differ	ent types of diagnostic tests.	5	1					
Insulation resistance- measurement, interpretation, tests, involvement of different								
factors, practical applications and	d working formulas.	2	1					
Dielectric testing- materials, the	bry of dielectric breakdown, leakage current and	2	1					
dielectric current, objective of di	electric testing, false failure, a.c. vs. d.c. testing.	2	1					
Common testing techniques, pol	arization index test, dielectric absorption test, HiPot	2	1					
test, step voltage test, surge test.		2	1					
Conventional diagnostic techniq	ues in transformers- dissolved gas analysis, degree	3	1					
of polymerization, furan in oil -a	nalysis.	5	1					
Time domain dielectric response	measurements- polarization and depolarization	3	2					
current measurements, concept of	f recovery voltage.	5	2					
Frequency domain spectroscopy	. Advantages and limitations of dielectric response	1	1					
measurements in time-domain an	nd frequency-domain.	1	-					
Switchgear monitoring- introduc	tion, monitored parameters, current developments	2	0					
in techniques, assistance in main	tenance scheduling and cost analysis.		Ŭ					
Introduction to condition monito	ring of rotating machine: The need for monitoring ;	1	0					
What and when to monitor			-					
Construction, operation and failu	re modes of electrical machines: Construction of							
electrical machines; material use	d; Structure of electrical machines and their types;	3	1					
Insulation aging, insulation failu	re, other failure							
Reliability of machines and typic	cal failure rates: Root causes; Reliability analysis;	3	1					
Typical failure rates and MTBFs								
Instrumentation requirements		1	1					
Signal processing requirement	s	1	1					
Temperature monitoring		1	1					
Chemical monitoring								
Vibration monitoring								
Electrical techniques: current, flux and power monitoring								
Electrical techniques: discharg	e monitoring	2	0					
Application of artificial intellig	gence techniques	1	0					

Reference Books:

- 1 Condition Monitoring of Rotating Electrical Machines: Peter Tavner, Li Ran, Jin man & Haward Shedding
- 2 Hand Book of Condition Monitoring: B. K. N. Rao
- 3 Hand Book of Condition Monitoring Techniques and Methodology: A Davis.
- 4 Recent Trends in the Condition Monitoring of Transformers, Theory, Implementation and Analysis: Sivaji Chakravorti, Debangshu Dey, Biswendu Chatterjee, Springer, London.

- Class Room lecture (Chalk and Board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	0ι	utcom	nes:														
The stud	The students of the course should be able to																
CO1	Id	lentify	y the	electr	rical to	echnio	ques	in cor	nditio	n mo	nitori	ng of	equipi	nents	(K2).		
CO2	Explain the methods of plant condition monitoring, their maintenance, safety and potential																
	costs (K2).																
CO3	Apply maintenance strategy suitable for particular equipment/system (K3).																
CO4	Illustrate the basic insulation diagnostic tests (K3).																
CO5	Analyse the methods of condition monitoring used in rotating machines, transformers and																
	SW	vitchg	ears (K4).													
CO-PO	M	appir	ng (3	– Str	ong, 2	2 - M	odera	ate an	d 1 –	Weal	k)						
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Conditio	n ng	CO1	3	2	1				1								3
of	ug	CO2	1	3	1				1								3
Electrica		CO3	1	3	1				1								3
System	"	CO4	1	2	1	3			1								3
System		CO5	1	1	2	3			1					1			3

Course code	EE/PE/H/T/327
Category	Program Elective
Course title	Honours Paper II (Basket-2)
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;

Course code	EE/PE/H/T/327A		
Category	Program Elective		
Course title	Bio-Medical Instrumentation		
Scheme and Credits	L-T-P: 3-1-0; Credits: 4.0;		
Pre-requisites (if any)			
EE/PE/H/T/327A: Bio-Medica	al Instrumentation	L	Т
Components of Man-Instrumen	t system	2	0
Measurement of Electrical pote	ntials and Magnetic Fields from the Body surface	2	1
Electrodes; Half-Cell Potential;	3	1	
Biopotential amplifiers; Medica	3	2	
The ECG: Electrode placement	; Vectorcardiography; Feature extraction	4	1
The EMG		2	1
The EEG; Event related potenti	als, Other body surface potentials;	2	0
EOG; Electroretinogram		2	0
Stimulation of excitable tissues	; Cardiac pacing and defibrillation	2	0
Heart-lung machine		1	0
Dialyzer		1	0
Sensors commonly encountered	4	1	
Pressure measurements - blood			
Electro-chemical sensors - non	invasive blood gas sensing with electrodes	4	2
Optical sensors – Pulse Oximet	ry		
Plethysmography; volume displ	acement; impedance, Pulmonary Function Tests		
Ultrasound - Doppler US for bl	ood and tissue velocity measurements Digital		
Interfaces in measurement syste	ems		
Patient care monitoring unit		3	1
Networking			
Medical Transcription			
Internet based monitoring			
Tomographic Techniques:			
a)X-Ray/ CT scan		2	1
b) MRI		2	1
c) Beta-gamma scanning			
Bioelectric Signal Processing;			
Biotelemetry		4	3
Bioelectric Signal Processing to		U	
reduction methods.			
Reference Books:			

- 1 Medical Instrumentation: Application and Design: John G. Webster, Editor
- 2 Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation: Robert B. Northrop
- 3 Biomedical Instrumentation and Measurements: L. Cromwell, F. J. Weibell, E. A. Pfeiffer
- 4 Design and Development of Medical Electronic Instrumentation: David Prutchi, Michael Norris

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

CO1	Describe the measurement procedure of various physiological parameters related to
	biomedical instrumentation. (K1)
CO2	Explain the origins of various bioelectric potentials and operating principles of bio-

COZ	Explain the	e ong	, ms o	or va	lious	bioelectri	c poten	tials and	r obei	ating	g princ	ipies	01	DIO
	potential an	nplifi	ers. ((K2)										
200				•	0				0					

CO3	Illustrate methodologies for acquisition and processing of various biomedical signals. (K3)
CO4	Investigate the suitability of a bioinstrumentation system to various physiological events.

(K4)

Bio-Medical Instrumentation		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	1													3
	CO2	3	2	1												3
	CO3	2	3	1	2	2										3
	CO4	1	2	1	3	2	1									3

Cou	rse code	EE/PE/H/T/327B								
Cate	egory	Program Elective								
Cou	rse title	Energy Systems								
Sche	eme and Credits	L-T-P: 3-1-0; Credits: 4.0;								
Pre-	requisites (if any)									
				-						
EE/I	PE/H/T/327B: Energy Syste	ems	L	Т						
Ener	gy Resources in general,	present scenario, Energy consumption and acts,	5	1						
Environmental aspects of Thermal, Nuclear and hydroelectric power generation.										
Туре	es of emission from various	sectors, co-relation between emission & pollution.	3	1						
Kyot	o protocol, and carbon cred	lit etc.	5	1						
Ener	Energy audit: primary and detail auditing.									
Energy management: Demand side management (DSM) and Supply side										
mana	management (SSM), Supply side management through energy price control.									
Smar	Smart Grid – functions, features and technologies. The role of Reactive power									
mana	5	2								
generations, technical issues of DG connection at distribution voltage level.										
Com	position of Micro grid.									
Rene	ewable energy resources: So	olar- solar thermal, solar PV	3	1						
Wind	d energy- prospects and sta	tus in national and global context, principles of wind								
energ	gy conversion, wind monit	oring system, VAWT and HAWT, selection of site	4	2						
for V	VTGS.									
Geot	hermal, Tidal, Bioenergy-1	Biomass and bio gas with gasifiers etc.	3	1						
Fuel	cell. Mini and micro hydel	power plant, micro turbine.	4	2						
Ener	gy storage and conservation	on:- Types and methods of energy storage, Energy								
stora	ge setups like Chemical,	Thermal, Magnetic, fly wheel storage etc. Energy	5	2						
cons	ervation - Concept of co-ge	eneration, combined heat and power (CHP).								
Refe	rence Books:									
1	Energy Management Hand	dbook: Wayne C. Turner & Steve Doty, 6th Ed., The Fa	airmont							
	Press, Inc.									
2	Guide to energy managem	ent: Barney L. Capehart, Wayne C. Turner, William J.	Kenne	dy,						
	6th Ed., The Fairmont Pre	ss, Inc.								

- 3 Power Station Engineering and Economics: Skortzki, B. G. A. and Vopat W. A., McGraw Hill, New York.
- 4 Solar Energy Engineering: Sayigh A. A. M, Academic Press.
- 5 Demand Side Management Planning: Gelling C. W. et al, The Fairmount Press, Lilbum, USA
- 6 Generation of Electrical Energy: B. R. Gupta, Eurasia Publishing House (Pvt.) Ltd.
- 7 Non-Conventional Energy Resources: Prof. D. S. Chauhan and Prof. S. K. Srivastava, New Age International (P) Ltd.

- Class Room lecture (Chalk and Board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Course Outcomes:															
The students of the course should be able to																
CO1	Assess the environmental aspects of conventional power generation. (K1)															
CO2	Describe/ discuss the principles of power generation from renewable sources. (K2)															
CO3	Explain the concept of energy management and energy audit. (K2)															
CO4	Identify the energy scenario and identify the principles of energy conservation and energy															
5	storage devices. (K2)															
CO5	Identify the features of smart grid and distributed power generation. (K2)															
CO-PO	Mapp	ing (3	3 – Str	ong, 2	2 - M	odera	te and	1 - V	Weak)							
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1						2	3	1							3
Energy	CO2	3	1													3
Systems	CO3						3					2	1			3
	CO4	2					3	2								3
	CO5	1		3				2								3

Course code	EE/PC/B/S/321
Category	Program Core
Course title	Electrical Engineering Laboratory - IV
Scheme and Credits	L-T-P: 0-0-3; Credits: 1.5;
Pre-requisites (if any)	

EE/PC/B/S/321: Electrical Engineering Laboratory - IV	Р							
1. Starting and performance of single phase induction motor.	3							
2. Calibration of a 3-phase Watt-Hour meter.	3							
3. Study of DC Servo Motor characteristics.								
4. Measurement of generalized constant (A, B, C, D) of a long transmission line.	3							
5. Measurement of high AC voltage by sphere gap and peak voltmeter.	3							
6. Calibration of Lux meter and measurement of horizontal intensity distribution from								
a lamp with the calibrated Lux meter.								
7. Study of 3- phase transformer connections.	3							
8. Measurement of temperature.	3							
9. Study of on-off control system.	3							
10. Study of power transfer through a transmission system.	3							
11. Study and dry power frequency flashover test on 11kV porcelain pin insulator								
Arrear, Laboratory Examination	6							
	-							

- Class room lectures (Chalk and Board) (D1)
- Active learning (D4)
- Blended/Hybrid learning (D5)
- Discussions (D7)
- Case Studies (D9)

Course Outcomes:

The students of the course should be able to

CO1	Identify the instruments required to perform the experiment (K1, S1)
CO2	Select the range/ratings of the instruments identified (K2, S1)
CO3	Comprehend the objective of the experiment and Relate that with the acquired
	theoretical knowledge (K3, S2)
CO4	Develop the circuit duly connecting selected instruments and other devices (K2, S2)
CO5	Interpret the data and prepare a detailed report. (K2, S2)

CO-PO Ma	CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Electrical Engineering Laboratory - IV	CO1	3	2	1						2				3		
	CO2	1	3	2						2				3		
	CO3	1	3	2						2				3		
	CO4	1	2	3						2				3		
	CO5	1	1	2	3				1	2		1	1	3		

Course code	EE/PS/B/S/322
Category	Program Sessional
Course title	Power Electronics Design & Laboratory
Scheme and Credits	L-T-P: 0-0-3; Credits: 1.5;
Pre-requisites (if any)	

EE/PS/B/S/322: Power Electronics Design & Laboratory	P
1. Design of 1-phase and 3-phase rectifiers and inverters.	6
2. Design of choppers, dc/dc converters and ac phase controllers.	9
3. Design of related magnetic and filter circuits.	3
4. Design of relay and servo stabilizers.	3
5. Design of the control hardware and software for power electronic circuits.	3
6. Design of interface between control and power section.	3
7. Application of SPICE, MATLAB or other simulation software to power electronic	12
circuit simulation.	12

- Class room lectures (Chalk and Board) (D1)
- Active learning (D4)
- Blended/Hybrid learning (D5)
- Discussions (D7)
- Case Studies (D9)

Course Outcomes:

The students of the course should be able to

CO1	Relate and apply acquired knowledge of power electronics to identify a given problem
	(K1, S1)
CO2	Select different components and their ratings for appropriate circuit design (K2, S1)
CO3	Develop the circuits after duly connecting the selected components (K2,S2)
CO4	Assess the performance of the designed circuit using SPICE, MATLAB and other
	simulation software (K6, S3)

		U V		0												
D		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Power Electronics Design And Laboratory	CO1	3	2	1						2						
	CO2	1	2	3						2						
	CO3	1	1	2	3					2						
	CO4	2	1	1	1	3		1		2						

Course	cse code EE/PS/B/S/323																		
Catego	y					Program Sessional													
Course	title					Power System Design													
Scheme	and C	redits	5			L-T-P: 0-0-2; Credits: 1.0;													
Pre-req	uisites	(if an	y)																
EE/PS/	B/S/32	3: Pov	wer S	ystem	Desi	gn									Р				
Solving problems of power transmission and distribution systems.															3	9			
Content Delivery Method																			
•	• Class room lectures (Chalk and Board) (D1)																		
•	• Active learning (D4)																		
•	• Blended/Hybrid learning (D5)																		
•	• Discussions (D7)																		
• Case Studies (D9)																			
Course	Outco	mes:																	
The stuc	lents of	f the c	ourse	shoul	d be a	able to)												
CO1	Recal	l the k	nowle	edge o	of dist	ributi	on sys	stem d	lesign	. (K1	S1)								
CO2	Categ	orise	the Lo	ow Te	ension	(L.T.) and	High	Tensi	ion (H	[.T.) lo	ad of	the giv	ven di	stributi	ion			
	systen	n. (K5	, S2)																
CO3	Recon	nmen	d the	L.T. 8	and H	.T. tra	nsfor	mer si	ze. (K	K6)									
CO4	Deter	mine	the lo	cation	of L.	T. and	d H.T	. trans	form	ers an	d size	of cor	nductor	s. (K-	4, S1)				
CO5	Calcu	late th	ne effi	cienc	ies of	transf	forme	rs and	l distr	ibutoı	s. (K3)							
CO6	Sumn	narize	the d	esign	probl	em ar	nd its	soluti	on as	a repo	ort. (Ke	5, S1)							
CO-PO	Mapp	ing(3	– Stro	ong, 2	- Mc	oderat	e and	1 – W	/eak)										
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
-	CO1	3																	
Power	CO2	2	3							2									
Design	CO4	3	4																
	CO5	3																	
	CO6	2	2							3									

Course code	EE/PC/B/S/324
Category	Program Core
Course title	Microprocessor & Microcontroller Laboratory
Scheme and Credits	L-T-P: 0-0-3; Credits: 1.5;
Pre-requisites (if any)	

EE/PC/B/S/324: Microprocessor & Microcontroller Laboratory

Hand on experience with different microprocessor and microcontroller systems and their interfaces.

39

Р

Content Delivery Method

- Class room lectures (Chalk and Board) (D1)
- Active learning (D4)
- Blended/Hybrid learning (D5)
- Discussions (D7)
- Case Studies (D9)

Course Outcomes:

The students of the course should be able to

CO1	Relate and follow the knowledge acquired on architectures of processors along with the
	organization of memories and peripherals along with the boards of processors. (K1, S1)
CO2	Translate the requirements of problems into a sequence of tasks as well as steps of assembly
	language programming and consequently operate the system accordingly. (K2, S2)
CO3	Develop appropriate programs to solve problems related to computation, sorting and
	presentation of data and show the result of execution of the program. (K3, S3)
CO4	Arrange various subprograms and subsystems using the concept of modular programming
	and integrate them to solve problems with the complexity of higher hierarchical level. (K4,
	S4)
CO5	Plan a processor-based system and represent it with interconnectivities of appropriate
	modules in a direction to achieve the targeted result. (K5, S5)

11																
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Microprocessor	CO1	3	1													
&	CO2	3	1													
Microcontroller	CO3	2	3	2	1											
Laboratory	CO4	1	2	3	1											
	CO5	1	2	2	3	2										