Third Year First Semester

Course code	EE/PC/B/T/311		
Category	Program Core		
Course title	Electrical Machines-III		
Scheme and Credits	L-T-P: 3-0-0; Credits: 3.0;		
Pre-requisites (if any)			
EE/PC/B/T/311: Electrical Mach	ines-III	L	Т
Single-phase induction motors:	Construction and operating principle of split-		
phase and capacitor-start-capacit	tor-run 1-phase induction motors. Operating	2	0
characteristics.			
Construction and operating print	ciple of capacitor-start-induction-run induction		
motors. Winding of 1-phase indu	action motor. Operating characteristics. Double	5	0
revolving field theory, Cross field	theory. Equivalent circuit, phasor diagram.		
Shaded-pole type motor: Construct	tion and operating principle. Operating	1	0
characteristics.		1	0
Repulsion start 1-phase induc	tion motor: Operating principle. Operating	2	0
characteristics.		3	0
AC Commutator Motors: Tra	nsformer and rotational emf's in phase and		
commutator windings. Expression for torque and power. Action of commutator as			0
frequency converter.			
Study of the AC Plain Series moto	r, its phasor diagram, commutation, brush emf's,		
design features. Use of compens	ating and compole winding to improve power	4	0
factor and commutation.			
Synchronous Generator: Stator	construction, Cylindrical rotor and salient rotor		
construction. Principle of operation	on. Armature reaction, its effect on load power	5	0
factor. Alternator regulation. Syne	chronous reactance. Prediction of regulation by		0
various methods.			
Salient Pole Machine: Two-reacti	on Theory. Damper windings.	3	0
Short circuit, Transient and sub-tr	ansient reactances. Determination of X _s , X _d , X _q ,		
	Methods of voltage control and schemes for	2	0
excitation systems.	C		
•	wer flow, power angle characteristics, operating		
•	ity. Excitation characteristics, V-curves, parallel	4	0
operation.			
1	eveloped, circle diagrams for constant power		
•	on. V-curves and O-curves. Starting methods.	3	0
Synchronous induction motor. Ope	-		
Tests as per standards.	-	2	0
Introduction to Permanent Mag	net synchronous machines.	1	0

1	The Performance and Design of A.C. Commutator Motors: E. Openshaw Taylor
2	Electrical Machinery: S. K. Sen
3	AC Machines: Puchstein, Lloyd &Hunte
4	Performance and Design of Alternating Current Machines: M.G. Say
5	Principles of Alternating Current machinery: Lawrence
6	Electrical Machines: P.K. Mukherjee & S. Chakravorti

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

CO1	Describe the basic principles of operation of single phase induction motor, A.C.
	commutator motor and Cylindrical Rotor and Salient Pole Synchronous machine.(K1)
CO2	Discuss the constructions of single phase induction motor, A.C. Commutator motor and
	Cylindrical Rotor and Salient Pole Synchronous machine.(K2)
CO3	Develop and Analyze equivalent circuits for single phase induction motor and methods of
	determining voltage regulation of Cylindrical Rotor and Salient Pole Synchronous
	machine.(K3)
CO4	Analyze various performance characteristics of single phase induction motor, A.C.
	Commutator motor and Discuss and Analyze excitation circle and power circle; operating
	chart, V-curve and O-curve of Synchronous machine. (K4)
CO5	Solve numerical problems related to various aspects of single phase induction motor, A.C.
	commutator motor and Cylindrical Rotor and Salient Pole Synchronous machine. (K3)

CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)

	11 0	·														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	2	1				1					1			
Electrical	CO2	3	1	2				1					1			
Machines III	CO3	1	2	3				1					1			
	CO4	1	1	2	3			1					1			
	CO5	1	3	2				1					1			

Course code	EE/PC/B/T/312
Category	Program Core
Course title	Power System Planning and Design
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;
Pre-requisites (if any)	

EE/PC/B/T/312: Power System Planning and Design	L	Т
Transmission line parameters – Resistance, Inductance, Capacitance and	-	-
Conductance. Inductance of single phase line, inductance of three phase line with		
symmetrical and unsymmetrical spacing, concept of GMD and GMR. Inductance of	5	2
composite conductor systems – stranded conductors, bundle conductor and Double	5	2
circuit lines.		
Capacitance of single phase line, capacitance of three phase lines with symmetrical		
and unsymmetrical spacings, capacitance calculation for double circuit line and	4	2
bundle conductor. Effect of earth on capacitance calculation. Skin effect and		
proximity effect. Interference between power and communication lines.		
Line representation – Representation of short, medium and long lines, Pi and T	4	2
models. A, B, C, D constants of transmission lines and their measurement.	-	
Travelling wave interpretation of long line equations, tuned lines.	2	0
Transmission line structure- Types of conductors, line supports - poles, towers,	1	0
stay& Guy wires	1	0
Sag And Tension calculations, stringing chart, sag template	2	1
Insulators – Materials of insulators, types of insulators – Pin and Disc type – their	1	0
applications	1	0
Underground Cables - Construction of cables, single and multicore cables,		
different types, capacitance of belted cables, dielectric loss in cables, heating of	3	1
cables.		
Legal aspects of electricity supply- Electricity acts, rules and codes. Standards	1	0
followed in power supply, environmental and safety measures	1	0
Commercial aspects of electricity supply – Expenditure in power Utility. Factors	2	1
influencing tariffs, types of consumers, different types of tariffs.	3	1
Administrative aspects of electricity supply- Development of power sector in India.		
Administrative set up and organisations in power sector. Stages involved in power	4	0
planning- load analysis, load management & load forecasting.		
		1
Reference Books		

- 1 Power System Analysis: J. J. Grainger & W. D. Stevension, McGraw Hill
- 2 Power System Engineering: I. J. Nagrath & D. P. Kothari, Tata McGraw Hill
- 3 Electrical Power Systems: Ashfaq Husain, Vani Educational Books.
- 4 Elements of Power System Analysis: W. D. Stevension, McGraw Hill.
- 5 A text book on Power System Engineering: A. Chakrabarti, M. L. Soni, T.V. Gupta, U.S.

Content Delivery Method

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Out	tcome	s:														
The stu	dents	s of th	e coi	urse s	hould	be a	ble to										
CO1	Exp	plain (the b	asic c	oncep	ots an	ld star	ndards	s of tra	ansmi	ssior	and o	distrib	ution s	system	n	
	plar	lanning. (K2)															
CO2	Exp	plain (the a	dmini	strativ	ve an	d fina	incial	aspec	ts of _l	powe	r tran	smissi	on sys	tem.	(K2)	
CO3	Cal	Calculate the overhead and underground transmission line parameters and structures from															
	elec	etrical	and	mech	anical	l aspe	ects. (K3)									
CO4	Cla	ssify	trans	missi	on lin	es an	d ana	lyze (the pe	rform	ance	of tra	insmis	sion li	nes. (K4)	
CO-PC) Ma	pping	g (3 -	- Stro	ng, 2	– Mo	derat	e and	1 - W	/eak)							
Power			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
System	1 ⁻	CO1	3	1	1			1		1							
Plannin	g	CO2	2	3													
and	(CO3	3	2	1			1									
Design	1	CO4	3	2	1			1									

Course code	EE/PC/B/T/313		
Category	Program Core		
Course title	Linear Control System		
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;		
Pre-requisites (if any)			
EE/PC/B/T/313: Linear C	Control Systems	L	Т
Introduction to Control Sys	tems: Classification of control systems with examples.		
Properties of Control Syste	ems: Stability, steady-state & transient errors, disturbance	2	0
rejection, insensitivity and	robustness. Errors and Error constants, System types.		
Time response of system:	Time domain specifications, Ramp response of second	3	2
order system, concept of do	ominant poles, Time response with NMP zeros.	3	Z
Review of frequency doma	ain methods: Bode and Nichols plots. Frequency Domain		
Specifications in open lo	op and closed loop and their significance, Concept of	3	1
Bandwidth (3 dB BW & 90	0 degree BW) and Cut-off frequency, Effect of addition of	3	1
poles and zeros on Bandwi	dth.		
Control system component	s: Position and velocity sensors and encoders, servomotors		
and voice coil actuators.		2	0
Case Studies: Performance	analysis of remote position control system and generator	3	0
voltage regulation.			
Basic Control actions: Prop	ortional, integral, derivative, and their combinations.		
Design and compensation of	of control systems in frequency domain: Lag compensator,	4	2
	compensator and lag-lead compensator.		
	Rank of matrix, eigenvalues, eigenvector, computation of	1	1
function of matrix.		1	1
Stability of linear system	s: Routh-Hurwitz criterion, Nyquist criterion. Stability	4	2
margins.		4	2
	s of system gain and additional pole-zeros on stability.		
•	on of control systems: block diagram reduction and signal	4	2
flow graph analysis.			-
	oncept of state, state variable, state model. State variable		
	tem, diagonalization, Relating transfer function with state		
•	ate model of linear time-invariant system.		
-	s in state space (cascade form, parallel form, controllable	4	2
-			
observability.	canonical form). Elementary concept of controllability &		
Reference Books:			
	ngineering: Norman S. Nise, 6 th Edition, Wiley, 2011.		
•	ngineering: I. J. Nagrath and M. Gopal, 5 th Edition, New Age	_	
International, 2009		-	
	•		

- 3 Automatic Control Systems: Benjamin C. Kuo and Farid Golnaraghi, 9th edition, Wiley; 2009.
- 4 Control Systems Principles and Design: M. Gopal, 3rd edition, Tata Mgraw Hill, 2008
- 5 Control Systems: Naresh K. Sinha, 3rd edition, New Age International, 2004.
- 6 Modern Control Systems: Richard C. Dorf and Robert H. Bishop, 12th Edition, Prentice Hall, 2011.
- 7 Control System Theory: Sushil Das Gupta, Khanna Publishers, 1987

Content Delivery Method

- Class room lecture (chalk and board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course	Outco	omes	:													
The stud	dents c	of the	cours	se shou	uld be	able	to									
CO1	Explain the configurations of control systems, the notion of stability and related concepts on											ots on				
5	steady-state and transient errors, disturbance rejection, insensitivity and robustness. (K1, K2).								(K1,							
]																
CO2	Describe different control system components; Interpret time responses of the systems;												tems;			
]	Discuss about the absolute stability of a system using Routh-Hurwitz Criteria (K1, K2).															
CO3]	Develop knowledge on Block Diagram reduction technique and Signal Flow Graph (K3);															
]	Develop knowledge on closed loop frequency response of an LTI system; (K2, K3).															
CO4	Desigr	1 suit	able 1	P, PI,	PD, I	PID co	ontrol	lers;	Exan	nine t	he dyn	amic t	behavio	or and	stabil	ity of
	an LT	I sys	tem b	y con	struct	ing R	loot I	Locus	and	Asce	r tain t	he stat	oility o	of a sy	stem	using
]	Nyquis	st Cr	iterior	n (K3,	K4).											
	•			•			•				s for			U		-
		-		ign su	uitabl	e con	pens	ators	using	g both	n frequ	ency a	and tir	ne do	main l	based
1	technic	ques	(K4).													
CO-PO				-												
			PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Linear	CO1 CO2	3	1 2	1		2										
Control	CO2 CO3	<u> </u>	<u>2</u> 3	1	1	2										
Systems	CO3	3	2	2	2	2		1		1		1	1			
	CO5	3	2	2	2	2		1		2		1	1			

Course code	EE/PC/B/T/314
Category	Program Core
Course title	Power Electronics
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;
Pre-requisites (if any)	

EE/DC/D/T/214, Down Electronics	T	T
EE/PC/B/T/314: Power Electronics	L	Т
Major Power semiconductor devices used in Power Electronics:		
Diode, SCR, GTO, Triac, Bipolar Power Transistor, Power MOSFET, IGBT -their		
type variations, important parameters, internal and equivalent circuits, Safe Operating	5	2
Area, their operation and switching characteristics. Drive techniques and isolation of		-
drive pulses. Protection including fuses, snubbers and clamps. Steady and switching		
power loss in devices: its effect & minimization. Cooling and Heat-sinks.		
Choppers:		
Principles of buck, boost and buck-boost Choppers with R and RL load. Methods of	2	1
voltage control : PWM & PFM techniques.		
Inverters:		
Push-pull inverter, principles and different topologies of single-phase and three-phase		
bridge and PWM inverters. Methods of voltage control: DC bus variation and PWM.	3	1
Methods of frequency control, reduction of harmonics. SCR forced commutation		
techniques and their application to choppers and inverters. Current Source Inverters.		
Power Supplies:		
Principles of isolated dc/dc converters, Linear Power Supply and SMPS.	2	1
AC Voltage Controller:	2	1
Integral Cycle control, phase control and their applications	2	1
Uncontrolled Rectifiers:		
Input and output characteristics of common rectifier topologies: Single-phase half-		
wave and full-wave Diode rectifiers with R, RL, RC and RLE load. Study of same	5	2
with highly inductive load. Effect of Free-wheel diode. Output average voltage for		
'm' pulse diode rectifier. Three-phase half-wave and full-wave Diode rectifiers with		
highly inductive load. Introduction to higher pulse rectifier systems and use of Inter-		
Phase Reactor.		
Phase Controlled Rectifiers:		
Single-phase half-wave and full-wave SCR rectifiers with R, RL and RLE load.		
Study of same with highly inductive load. Effect of Free-wheel diode. Output average	E	2
voltage for 'm' pulse SCR rectifier. Three-phase half-wave and full-wave SCR	5	2
rectifiers with highly inductive load. Effect of free-wheel diode. Half-controlled		
rectifiers with highly inductive load. Commutation effects, overlap angle and voltage		
loss. Input current harmonics and power factor, output voltage ripple & harmonics.		

C		1						
	tion of control pulses for SCR Converters:							
-	e of generation of control pulses for SCR converters: cosine, ramp and	2	1					
	ant pulse methods. Principle of UJT control. Line Commutated SCR		_					
	s, reverse power flow.							
•	converters:							
-	e operation of the Cyclo-converter. Their operation and switching	2	1					
characte	eristics							
	nce Books:							
1	Power Electronics: N. Mohan, T. M. Undeland & W.P. Robbins, John Wiley &	& Sons.						
2	Power Electronics: V. Subrahmanyam, New Age International (P) Ltd.							
3	Power Electronics: M. H. Rashid, 3 rd Edition, Prentice-Hall of India Pvt. Ltd.							
4	Power Electronics: B. W. Williams, Macmillan.							
5	Modern Power Electronics: P. C. Sen, Wheeler Publishing.							
6	Power Electronics: P. S. Bimbhra, 4 th Edition, Khanna Publishers							
7	Power Electronics: P. C. Sen, Tata McGraw-Hill Publishing Co. Ltd.							
8								
	Wiley Eastern Ltd							
•	Visual presentation (D2) Tutorial (D3) Discussion (D7)							
Course	Outcomes:							
	dents of the course should be able to							
CO1	Describe the construction, characteristics and basic principle of operation of	nower						
COI	electronic devices and common rectifier topologies (K2)	power						
CO2	Describe working principle, circuit diagrams, and input output characteristi	cs of D						
002	converter, Inverters, SMPS and common rectifier topologies (K2)	C3 01 D						
	I CONVENEL, INVENELS, AIVEA ANG CONTINUT FELTUELTODOTOPIES EN ZI							
CO3		per Vol	t					
CO3	Discuss SCR forced commutation techniques and their applications to Chopp	ber, Vol	t					
	Discuss SCR forced commutation techniques and their applications to Chopp Source Inverters and Current Source Inverters (K2)							
CO3 CO4	 Discuss SCR forced commutation techniques and their applications to Chopp Source Inverters and Current Source Inverters (K2) Develop the mathematical expression of output voltages of DC-DC Converter 							
CO4	Discuss SCR forced commutation techniques and their applications to Chopp Source Inverters and Current Source Inverters (K2)Develop the mathematical expression of output voltages of DC-DC Converter common rectifier topologies (K3)	ers, and						
	Discuss SCR forced commutation techniques and their applications to Chopp Source Inverters and Current Source Inverters (K2)Develop the mathematical expression of output voltages of DC-DC Converter common rectifier topologies (K3)Analyze the output waveforms of common DC-DC Converters, Rectifiers and	ers, and						
CO4 CO5	 Discuss SCR forced commutation techniques and their applications to Chopp Source Inverters and Current Source Inverters (K2) Develop the mathematical expression of output voltages of DC-DC Converter common rectifier topologies (K3) Analyze the output waveforms of common DC-DC Converters, Rectifiers and configurations (K4) 	ers, and	rter					
CO4	Discuss SCR forced commutation techniques and their applications to Chopp Source Inverters and Current Source Inverters (K2)Develop the mathematical expression of output voltages of DC-DC Converter common rectifier topologies (K3)Analyze the output waveforms of common DC-DC Converters, Rectifiers and	ers, and	rter					

CO-PO M	Iappin	ng (3 -	- Stro	ng, 2	– Mo	derat	e and	1 - W	/eak)							
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	1	1				1								
Dowon	CO2	1	2	3												
Power Electronics	CO3	1	2	3	1			1								
Lieu onics	CO4	2	1	3												
	CO5	2	3	1												
	CO6	1	3	2	1			1								

Course code	EE/PC/B/T/315
Category	Program Core
Course title	Introduction to Statistical & Probabilistic Methods
Scheme and Credits	L-T-P: 2-1-0; Credits: 3.0;
Pre-requisites (if any)	

EE/PC/B/T/315: Introduction to Statistical & Probabilistic Methods	L	Т
Review of probability concepts, rules of probability, conditional probability, Bayes' formula.	2	1
Concept of random variables, probability mass function, cumulative distribution function and probability density function. Moments of random variables, moment generating functions, characteristic functions, probability generating functions. Markov's inequality and Chebyshev's inequality.	5	2
Discrete distributions: Binomial and Poisson, Continuous distributions: Uniform, Exponential, Gaussian, lognormal, Chi-Square, Gamma, Rayleigh.	4	2
Bivariate data: Joint probability distribution; Concept of correlation and covariance. Correlation coefficient: properties calculations, interpretations and usage, applications in electrical engineering.	4	2
Introduction to Random Process: First-order and Second-order statistics, ensemble averages. Auto correlation and Cross correlation, concepts of stationarity and ergodicity, Spectral density: energy spectral density and power spectral density, concept of white noise. LTI systems with random inputs: innovations representation of a stationary random process and applications in electrical engineering.	5	2
Sampling Statistics: sample mean and sample variance, distribution of sample mean, central limit theorem, joint distribution of sample mean and sample variance.	4	1
Parameter Estimation: maximum likelihood estimators, point estimates, interval estimates, confidence interval, the Bayes estimator.	4	1
Hypothesis Testing: significance level, critical region, Type I and Type II errors, tests concerning unknown mean of a normal population- two-sided test and one-sided test, p-value of a test, the t-test, tests concerning unknown variance, goodness of fit- chi-square test.	4	1
Regression: linear regression model, least squares estimators of the regression parameters, distribution of the estimators, statistical inferences about the regression parameters, weighted least squares, polynomial regression.	3	2
parameters, weighted least squares, porynomial regression.		

2 Probabilistic Methods of Signal and System Analysis: George R. Cooper and Clare D. McGillem.

- 3 Probability, Random Variables and Stochastic Processes: Athanasios Papoulis and S. U. Pillai.
- 4 Introduction to Probability and Statistics for Engineers and Scientists: Sheldon M. Ross.
- 5 SCHAUM'S Outline Series: Theory and Problems of Probability and Statistics: Murray R. Spiegel.
- 6 Statistical Methods (Part I and Part II): N. G. Das.
- 7 Modern Electronic Instrumentation and Measurement Techniques: Albert D. Helfrick and William D. Cooper.

Content Delivery Method

- Class Room lecture (Chalk and Board) (D1)
- Visual presentation (D2)
- Tutorial (D3)
- Discussion (D7)

Course Outcomes:

The students of the course should be able to

(CO1	State the notion of probability, rules of probability, conditional probability, Bayes'
		formula.
(CO2	Describe the notion of random variables, operations performed on a single random
		variable, and moment generating functions, and the essence of sampling theory(K2)

- CO3 Interpret discrete distributions: Binomial and Poisson, Continuous distributions:
 Uniform, Exponential, Gaussian, lognormal, Chi-Square, Gamma, Rayleigh distributions
- (K3).
 CO4 Develop the knowledge on bivariate random variables, independence and correlation; The estimation theory along with different estimators and percentage confidence level,
- regression analysis (K3).
 CO5 Analyze the properties of Random processes of different orders in the presence of noise and test statistical hypotheses (K4); Analyze statistical measurement of errors and
- uncertainties and relate the outputs of LTI systems with random inputs (K4).

CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)

	Ph. B		5110	115, 4		.0401	uie u	1104 1		un)						
Introduction		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
to Statistical	CO1	3	2	1												3
&	CO2	2	3	1				1			1	1	1			3
Probabilistic	CO3	2	3	2			1	1			2	2	1			3
Methods ^H	CO4	2	2	2	3		1	1		1	2	2	1			3
	CO5	2	2	2	3	1	1	1		2	2	2	1			3

Cou	rse code	EE/PC/B/T/316							
Cate	egory	Program Core							
Cou	rse title	Programmable Logic & Microcontroller							
Sche	eme and Credits	L-T-P: 3-0-0; Credits: 3.0;							
Pre-	requisites (if any)								
EE/I	PC/B/T/316 : Programm	able Logic and Microcontroller	L	Т					
Prog	rammable Logic Controll	ers (PLC): Architecture and functional components, I/O							
Proc	essing Methodologies, Pre	ogramming Languages. Sequence Function Chart, Ladder	5	0					
Diag	ram, and PLC input/output	ut Diagram. Case Studies.							
Prog	Concepts of PLA, PAL and FPGAs, Architecture, Basic	4	0						
Desig	4	0							
Intro	duction to VHDL language	ge basics. Modeling combinational and sequential logic	8	0					
syste	ems. Simulation and testin	ıg.	0	0					
Туре	es of FPGAs		1	0					
Xilin	Ds and applications areas.	1	0						
JTA	1	0							
Microprocessor vs. Microcontroller, Microcontroller Architecture, Memory									
Orga	are modules, Pin Configurations and Functions.	4	0						
Programming of Microcontroller in Assembly language and C, Concept of Assembler									
and Cross-compiler, Structures for Writing, Debugging and Uploading Program to									
Micr	ocontroller.								
Addr	ressing modes, Instruction	as corresponding to Data Transfer, Arithmetic, Logical,	6	0					
Bit-b	based and Branching operation	ations, I/O Port programming, Time delay loop.	0	0					
Inter	rupt programming, Interfa	acing with input and output peripherals, Interfacing with	6	0					
Sens	ors and Actuators using v	arious communication protocols.	0	0					
Refe	rence Books:								
1	Introductory VHDL: Fi	com Simulation to Synthesis: Sudhakar Yelamanchilli, Pears	son						
	Education.								
2	A VHDL Primer: J. Bh	asker, Pearson Education.							
3	VHDL for Engineers: H	Kenneth L. Short, Pearson Education							
4	The AVR Microcontro	oller and Embedded Systems Using Assembly and C: Mu	uhamma	ad Al					
Mazidi, Sarmad Naimi and Sepehr Naimi, Pearson Education									
5	Programming and Cus	stomizing the AVR Microcontroller: Dhananjay Gadre, I	McGrav	v Hil					
	Education								
6	AVR ATmega data she	bets							
	·								
Cont	tent Delivery Method								
	Class room lectury	e (chalk and board) (D1)							

• Visual presentation (D2)

Course O	Course Outcomes:															
The studen	nts of the	e cour	se sho	uld b	e able	to										
CO1	Arrang	e and	d rec	ogniz	e pro	ocesso	ors a	nd co	ontrol	lers	accord	ling t	the	ir ev	olutio	n of
	develop	ment	and te	chnol	ogy. ((K1)										
CO2	Describ	e the	archit	ecture	es and	funct	ional	comp	onent	s of t	he rele	evant 1	hardwa	are. (F	K1)	
CO3	Explain the programming language of hardware and distinguish each from others. (K2)															
CO4	Develop appropriate program and apply the programmed device in association with its															
	supporting peripherals to obtain output of specific requirements. (K3)															
CO5	Analyze	e the r	equire	ement	of va	rious	sub-s	ystem	s and	illus	trate t	heir ir	nterfac	ing te	chniq	ues
	to imple	ment	a syst	em of	f desir	ed fur	nction	ality.	(K4)							
•																
СО-РО М	Iapping	(3 - 5)	Strong	3, 2 - 3	Mode	rate a	nd 1 –	- Wea	k)							
Ducanomu		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Programma -ble Logic		3	1													
and	CO2	3	1													
Microcontr	CO3	3	2	1												
-ller	CO4	2	3	2	1											
	CO5	2	2	3	1											

Course code	EE/PC/B/S/311							
Category	Program Core							
Course title	Electrical Engineering Laboratory - III							
Scheme and Credits	L-T-P: 0-0-3; Credits: 1.5;							
Pre-requisites (if any)								
EE/PC/B/S/311 : Electrical Engineering	Laboratory - III	Р						
1. Open Circuit & Short Circuit characteristics of a single phase transformer.								
2. Calibration of Wattmeter using DC Potentiometer.								
3. Identification of linear system from frequency response test.								
4. Measurement of phase shift and observation of magnetizing current wave form and								
hysteresis loop by CRO.								
5. Determination of breakdown strength of	of liquid insulating material.	3						
6. Studies of Spectral composition and CO	CT of different lamps.	3						
7. Separation of losses of DC machine.		3						
8. Measurement of strain.		3						
9. Simulation of a second order dynamic	system on an analog simulator.	3						
10. Study of constant current source		3						
11. Determination of breakdown strength of	of solid insulating material.	3						
12. Arrear, Laboratory Examination								
	I							
Content Delivery Method								
• Class room lectures (Chalk and Board) (D1)								

- Active learning (D4)
- Blended/Hybrid learning (D5)
- Discussions (D7)
- Case Studies (D9)

Course Outcomes:

The students of the course should be able to										
CO1	Identify the instruments required to perform the experiment (K1, S1)									
CO2	Select the range/ratings of the instruments identified (K2, S1)									
CO3	Comprehend the objective of the experiment and Relate that with the acquired									
	theoretical knowledge (K3, S2)									
CO4	Develop the circuit duly connecting selected instruments and other devices (K2, S2)									
CO5	Interpret the data and prepare a detailed report. (K2, S2)									

CO-PO Mapp	CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Flootwicel	CO1	3	2	1						2				3		
Electrical	CO2	1	3	2						2				3		
Engineering Laboratory - III	CO3	1	3	2						2				3		
Laboratory - III	CO4	1	2	3						2				3		
	CO5	1	1	2	3				1	2		1	1	3		

Course code	EE/PS/B/S/312
Category	Program Sessional
Course title	Electrical Machine Design-I
Scheme and Credits	L-T-P: 0-0-2; Credits: 1.0;
Pre-requisites (if any)	

Р

30

9

EE/PS/B/S/312 : Electrical Machine Design-I

Design of Single-phase transformers

Design of Three-phase transformers

Reference Books:

- 1 A Course in Electrical Machine Design: A. K. Shawney
- 2 Electrical Machinery: S. K. Sen
- 3 Performance and Design of Alternating Current Machines: M. G. Say

Content Delivery Method

- Class room lectures (Chalk and Board) (D1)
- Active learning (D4)
- Blended/Hybrid learning (D5)
- Discussions (D7)
- Case Studies (D9)

Course	Outcom	es:														
The stud	lents of t	he cou	urse sł	nould	be al	ole to										
CO1	Relate a	acquir	ed kn	owled	lge o	f sing	gle-pł	nase	transf	orme	rs, lift	ing ma	gnets	and rea	actors.	(K1,
	S 1)															
CO2	Estimat	e din	nensio	ns of	diff	erent	parts	s of	single	e-phas	e trar	sform	ers, lif	ting n	nagnets	and
	reactors. (K2, S2)															
CO3	Assess the performance of the designed solution and suitably modify the design to meet the															
	set performance criteria. (K3,S3)															
CO4	Analyze the overall performance of the designed single-phase transformers, lifting magnets															
	and reactors. (K4,S3)															
CO5	Prepare	e a con	mpreh	ensiv	e det	ailed	desig	gn rep	port. (K5,S.	3)					
-																
CO-PO	Mappin	ig (3 –	- Stroi	ng, 2 -	- Mo	derate	e and	l 1 – `	Weak)						
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Electrica	CO1	3	2	1						1						
Machine	CO2	1	3	2						1						
Design-	CO3	1	2	3			ļ		1	1						
	CO4	1	2	2	3		2	2	1	1						
	CO5	1	2	2			1		2	1		3	1			

Course c	ode	EE/PS/B/S/313						
Category	,	Program Sessional						
Course ti	itle	Modeling & Digital Simulation Laboratory						
Scheme a	Scheme and Credits L-T-P: 0-0-3; Credits: 1.5;							
Pre-requ	isites (if any)							
FF/DS/R	/S/313• Modeling and Digita	Simulation Laboratory	Р					
EE/PS/B/S/313: Modeling and Digital Simulation Laboratory Introduction to Matlab/Simulink: Basic matrix operation, file operations, plotting, Matlab								
	development in command win							
1 0	n of problems on Matlab/Sim							
	-	ems. Study on time domain and frequency domain	3					
behavior.								
– D.C. cit	– D.C. circuit transients in time domain.							
– A.C. cir	– A.C. circuit response in time and frequency domain.							
– Simulation of D.C. shunt motor and open loop response.								
- Closed-loop speed control of D.C. shunt motor: Stability analysis by root-locus method.								
– Simulation of series and shunt faults in transmission lines.								
- Simulation of load frequency control for single-area and two-area power system.								
- Simulation of sampling and aliasing phenomenon. Study on quantization error of ADC.								
– FFT and Inverse FFT of harmonic rich signals.								
– Design of IIR and FIR filters and study on effect of finite word length.								
–Simulati	-Simulation of long transmission line and study of wave propagation.							
– Modeling of illumination level at working plane.								
Arrear, Laboratory Examination								
Content	Delivery Method							
•	Class room lectures (Chall	(D1) (D1)						
•	Active learning (D4)							
•	Blended/Hybrid learning (D5)						
•	Discussions (D7)	,						
•	Case Studies (D9)							
•	• Projects (D11)							
	Dutcomes: ents of the course should be ab	la ta						
			lations					
CO1	and solve general purpose pr	s of MATLAB and Simulink and perform basic simu	nations					
CO2		ems related to time and frequency domain analyses of	ofITI					
	systems. (K2, S2)	ins related to time and requency domain analyses (
L	systems. (112, 52)							

CO3	Simulate and Solve problems related to modeling and control of DC motors and modeling															
	of illumination levels. (K3, S2)															
CO4	Simulate faults and propagation of waves through different models of transmission lines,															
:	and load frequency control in power systems. (K4, S2)															
CO5	Solve problems related to digital signal processing e.g. aliasing, Fast Fourier Transform															
;	and Digital filters. (K4, S2)															
CO-PO Mapping (3 – Strong, 2 – Moderate and 1 – Weak)																
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Modeling	CO1	2	2	1		3										
and Digital	CO2	3	2	2	1	3				1	2	1				
Simulation	CO3	3	2	2	1	3				1	2	1				
Laboratory	CO4	3	2	2	1	3				1	2	1				
	CO5	3	2	2	1	3				1	2	1				